首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1435篇
  免费   81篇
  国内免费   17篇
测绘学   26篇
大气科学   107篇
地球物理   372篇
地质学   522篇
海洋学   127篇
天文学   235篇
综合类   12篇
自然地理   132篇
  2023年   9篇
  2022年   5篇
  2021年   29篇
  2020年   24篇
  2019年   23篇
  2018年   48篇
  2017年   45篇
  2016年   49篇
  2015年   45篇
  2014年   61篇
  2013年   102篇
  2012年   58篇
  2011年   88篇
  2010年   73篇
  2009年   102篇
  2008年   79篇
  2007年   63篇
  2006年   62篇
  2005年   59篇
  2004年   53篇
  2003年   45篇
  2002年   58篇
  2001年   21篇
  2000年   20篇
  1999年   21篇
  1998年   21篇
  1997年   18篇
  1996年   27篇
  1995年   18篇
  1994年   14篇
  1993年   3篇
  1992年   20篇
  1991年   5篇
  1990年   9篇
  1989年   9篇
  1988年   11篇
  1987年   11篇
  1986年   7篇
  1985年   12篇
  1984年   14篇
  1983年   13篇
  1982年   15篇
  1981年   10篇
  1980年   13篇
  1979年   6篇
  1978年   6篇
  1977年   8篇
  1976年   7篇
  1975年   4篇
  1973年   2篇
排序方式: 共有1533条查询结果,搜索用时 15 毫秒
921.
This paper evaluates the performances of four cyclogenesis indices against observed tropical cyclone genesis on a global scale over the period 1979–2001. These indices are: the Genesis Potential Index; the Yearly Genesis Parameter; the Modified Yearly Convective Genesis Potential Index; and the Tippett et al. Index (J Clim, 2011), hereafter referred to as TCS. Choosing ERA40, NCEP2, NCEP or JRA25 reanalysis to calculate these indices can yield regional differences but overall does not change the main conclusions arising from this study. By contrast, differences between indices are large and vary depending on the regions and on the timescales considered. All indices except the TCS show an equatorward bias in mean cyclogenesis, especially in the northern hemisphere where this bias can reach 5°. Mean simulated genesis numbers for all indices exhibit large regional discrepancies, which can commonly reach up to ±50%. For the seasonal timescales on which the indices are historically fitted, performances also vary widely in terms of amplitude although in general they all reproduce the cyclogenesis seasonality adequately. At the seasonal scale, the TCS seems to be the best fitted index overall. The most striking feature at interannual scales is the inability of all indices to reproduce the observed cyclogenesis amplitude. The indices also lack the ability to reproduce the general interannual phase variability, but they do, however, acceptably reproduce the phase variability linked to El Ni?o/Southern Oscillation (ENSO)—a major driver of tropical cyclones interannual variations. In terms of cyclogenesis mechanisms that can be inferred from the analysis of the index terms, there are wide variations from one index to another at seasonal and interannual timescales and caution is advised when using these terms from one index only. They do, however, show a very good coherence at ENSO scale thus inspiring confidence in the mechanism interpretations that can be obtained by the use of any index. Finally, part of the gap between the observed and simulated cyclogenesis amplitudes may be attributable to stochastic processes, which cannot be inferred from environmental indices that only represent a potential for cyclogenesis.  相似文献   
922.
The performance of seven regional climate models in simulating the radiation and heat fluxes at the surface over South America (SA) is evaluated. Sources of uncertainty and errors are identified. All simulations have been performed in the context of the CLARIS-LPB Project for the period 1990–2008 and are compared with the GEWEX-SRB, CRU, and GLDAS2 dataset and NCEP-NOAA reanalysis. Results showed that most of the models overestimate the net surface short-wave radiation over tropical SA and La Plata Basin and underestimate it over oceanic regions. Errors in the short-wave radiation are mainly associated with uncertainties in the representation of surface albedo and cloud fraction. For the net surface long-wave radiation, model biases are diverse. However, the ensemble mean showed a good agreement with the GEWEX-SRB dataset due to the compensation of individual model biases. Errors in the net surface long-wave radiation can be explained, in a large proportion, by errors in cloud fraction. For some particular models, errors in temperature also contribute to errors in the net long-wave radiation. Analysis of the annual cycle of each component of the energy budget indicates that the RCMs reproduce generally well the main characteristics of the short- and long-wave radiations in terms of timing and amplitude. However, a large spread among models over tropical SA is apparent. The annual cycle of the sensible heat flux showed a strong overestimation in comparison with the reanalysis and GLDAS2 dataset. For the latent heat flux, strong differences between the reanalysis and GLDAS2 are calculated particularly over tropical SA.  相似文献   
923.
We report on eight species of the freshwater diatom genus Gomphonema from aquatic habitats from the Yuntai Mountains of Henan Province, China. This work represe...  相似文献   
924.
Hydrological processes in mountainous settings depend on snow distribution, whose prediction accuracy is a function of model spatial scale. Although model accuracy is expected to improve with finer spatial resolution, an increase in resolution comes with modelling costs related to increased computational time and greater input data and parameter information. This computational and data collection expense is still a limiting factor for many large watersheds. Thus, this work's main objective is to question which physical processes lead to loss in model accuracy with regard to input spatial resolution under different climatic conditions and elevation ranges. To address this objective, a spatially distributed snow model, iSnobal, was run with inputs distributed at 50‐m—our benchmark for comparison—and 100‐m resolutions and with aggregated (averaged from the fine to the large resolution) inputs from the 50‐m model to 100‐, 250‐, 500‐, and 750‐m resolution for wet, average, and dry years over the Upper Boise River Basin (6,963 km2), which spans four elevation bands: rain dominated, rain–snow transition, and snow dominated below treeline and above treeline. Residuals, defined as differences between values quantified with high resolution (>50 m) models minus the benchmark model (50 m), of simulated snow‐covered area (SCA) and snow water equivalent (SWE) were generally slight in the aggregated scenarios. This was due to transferring the effects of topography on meteorological variables from the 50‐m model to the coarser scales through aggregation. Residuals in SCA and SWE in the distributed 100‐m simulation were greater than those of the aggregated 750 m. Topographic features such as slope and aspect were simplified, and their gradient was reduced due to coarsening the topography from the 50‐ to 100‐m resolution. Therefore, solar radiation was overestimated, and snow drifting was modified and caused substantial SCA and SWE underestimation in the distributed 100‐m model relative to the 50‐m model. Large residuals were observed in the wet year and at the highest elevation band when and where snow mass was large. These results support that model accuracy is substantially reduced with model scales coarser than 50 m.  相似文献   
925.
Porosity and permeability in sediment mixtures   总被引:1,自引:1,他引:0  
Porosity in sediments that contain a mix of coarser- and finer-grained components varies as a function of the porosity and volume fraction of each component. We considered sediment mixtures representing poorly sorted sands and gravely sands. We expanded an existing fractional-packing model for porosity to represent mixtures in which finer grains approach the size of the pores that would exist among the coarser grains alone. The model well represents the porosity measured in laboratory experiments in which grain sizes and volume fractions were systematically changed within sediment mixtures. Permeability values were determined for these sediment mixtures using a model based on grain-size statistics and the expanded fractional-packing porosity model. The permeability model well represents permeability measured in laboratory experiments using air- and water-based permeametry on the model sediment mixtures.  相似文献   
926.
Sediment cores were collected from April to August 2004 on tidal mudflats of the macrotidal Marennes-Oléron Bay (SW France), famous for the cultivation of Pacific oysters (Crassostrea gigas). The response of living (stained) benthic foraminifera to short-term biogeochemical disturbances in the sediment and overlying water, which may be involved in oyster summer mortality, was monitored. Short-term hypoxia occurred in early June, in conjunction with a sudden rise in temperature. In mid-June, the ammonia content of sediment porewater increased, leading to potentially maximal flux towards overlying waters. Foraminiferal assemblages, particularly in the topmost layer, were altered. Ammonia tepida was the most tolerant to temperature increase and hypoxic conditions whereas Brizalina variabilis and Haynesina germanica were sensitive to organic degradation and hypoxia. Cribroelphidium gunteri was the most opportunistic during recolonisation. Benthic foraminifera showed that short-term biochemical changes in the sediment are toxic and may be involved in the summer mortality of Pacific oysters.  相似文献   
927.
We provide a generalized discussion of tidal evolution to arbitrary order in the expansion of the gravitational potential between two spherical bodies of any mass ratio. To accurately reproduce the tidal evolution of a system at separations less than 5 times the radius of the larger primary component, the tidal potential due to the presence of a smaller secondary component is expanded in terms of Legendre polynomials to arbitrary order rather than truncated at leading order as is typically done in studies of well-separated system like the Earth and Moon. The equations of tidal evolution including tidal torques, the changes in spin rates of the components, and the change in semimajor axis (orbital separation) are then derived for binary asteroid systems with circular and equatorial mutual orbits. Accounting for higher-order terms in the tidal potential serves to speed up the tidal evolution of the system leading to underestimates in the time rates of change of the spin rates, semimajor axis, and mean motion in the mutual orbit if such corrections are ignored. Special attention is given to the effect of close orbits on the calculation of material properties of the components, in terms of the rigidity and tidal dissipation function, based on the tidal evolution of the system. It is found that accurate determinations of the physical parameters of the system, e.g., densities, sizes, and current separation, are typically more important than accounting for higher-order terms in the potential when calculating material properties. In the scope of the long-term tidal evolution of the semimajor axis and the component spin rates, correcting for close orbits is a small effect, but for an instantaneous rate of change in spin rate, semimajor axis, or mean motion, the close-orbit correction can be on the order of tens of percent. This work has possible implications for the determination of the Roche limit and for spin-state alteration during close flybys.  相似文献   
928.
The polar condensation/sublimation of CO2, that involve about one fourth of the atmosphere mass, is the major Martian climatic cycle. Early observations in visible and thermal infrared have shown that the sublimation of the Seasonal South Polar Cap (SSPC) is not symmetric around the geographic South Pole.Here we use observations by OMEGA/Mars Express in the near-infrared to detect unambiguously the presence of CO2 at the surface, and to estimate albedo. Second, we estimate the sublimation of CO2 released in the atmosphere and show that there is a two-step process. From Ls=180° to 220°, the sublimation is nearly symmetric with a slight advantage for the cryptic region. After Ls=220° the anti-cryptic region sublimation is stronger. Those two phases are not balanced such that there is 22% ± 9 more mass the anti-cryptic region, arguing for more snow precipitation. We compare those results with the MOLA height measurements. Finally we discuss implications for the Martian atmosphere about general circulation and gas tracers, e.g. Ar.  相似文献   
929.
The article presents a method to derive synthetic flow logs from low rate injection tests in wells, which are otherwise not accessible for logging. The tests were carried out in the 5 km deep geothermal well GPK2 in the Enhanced Geothermal System (EGS) project of Soultz-sous-Forêts (France) and were aimed at characterizing the status of the well before chemical treatments. The method consists of injecting water at constant flow rates into the well initially filled with brine. The wellhead pressure record of this test is transformed into log of the flow velocity versus depth by a technique described in the paper. Applying this method to borehole GPK2, three outlets could be detected and quantified within the cased and uncased section of this borehole. The outlet in the cased section at 3860 m absorbed 15% of the total flow. This depth corresponds to a known casing restriction, which makes the borehole inaccessible for logging operations. The two other outlets are at the casing shoe at 4420 m (15%) and at 4670 m (70%).  相似文献   
930.
When modelling the turbulent dispersion of a passive tracer using Reynolds-averaged Navier–Stokes (RANS) simulations, two different approaches can be used. The first consists of solving a transport equation for a scalar, where the governing parameters are the mean velocity field and the turbulent diffusion coefficient, given by the ratio of the turbulent viscosity and the turbulent Schmidt number Sc t . The second approach uses a Lagrangian particle tracking algorithm, where the governing parameters are the mean velocity and the fluctuating velocity field, which is determined from the turbulence kinetic energy and the Lagrangian time T L . A comparison between the two approaches and wind-tunnel data for the dispersion in the wake of a rectangular building immersed in a neutral atmospheric boundary layer (ABL) is presented. Particular attention was paid to the influence of turbulence model parameters on the flow and concentration field. In addition, an approach to estimate Sc t and T L based on the calculated flow field is proposed. The results show that applying modified turbulence model constants to enable correct modelling of the ABL improves the prediction for the velocity and concentration fields when the modification is restricted to the region for which it was derived. The difference between simulated and measured concentrations is smaller than 25% or the uncertainty of the data on 76% of the points when solving the transport equation for a scalar with the proposed formulation for Sc t , and on 69% of the points when using the Lagrangian particle tracking with the proposed formulation for T L .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号