首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   14篇
测绘学   3篇
大气科学   2篇
地球物理   87篇
地质学   60篇
海洋学   29篇
天文学   7篇
自然地理   29篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   2篇
  2015年   6篇
  2014年   6篇
  2013年   15篇
  2012年   2篇
  2011年   15篇
  2010年   7篇
  2009年   10篇
  2008年   12篇
  2007年   13篇
  2006年   12篇
  2005年   1篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  1999年   6篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   6篇
  1987年   4篇
  1986年   1篇
  1985年   4篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1967年   1篇
  1958年   1篇
排序方式: 共有217条查询结果,搜索用时 703 毫秒
91.
A method based on time-series of conductivity, temperature and depth (CTD) profiles which successfully determines favourable phytoplankton growth conditions for the spring bloom in nearshore temperate coastal waters was developed. The potential for shallow embayments to influence phytoplankton species composition in larger adjacent waters was also investigated. At temperate latitudes, such embayments should have favourable phytoplankton growth conditions earlier in the spring than open waters as bathymetry limits vertical mixing and thus increases light availability. The study area was Nanoose Bay, which is connected to the Strait of Georgia, British Columbia. Data were collected 2–3 times per week during the winter-spring of 1992 and 1993. A mooring with 5 current meters was placed at the mouth of the bay in 1992. The conservation equation for a scalar was used to estimate the balance between advective transport and biological source and sink terms. Variability in physical conditions and biological response between years was tremendous. Results indicate that seeding from the bay was not possible in 1992 but could have been in 1993. However, to conclusively determine the importance of Nanoose Bay on the spring bloom species composition in the Strait of Georgia, more extensive work is required. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
92.
93.
This study investigates Sb speciation in sediments along the drainage of the Upper Peter adit at the Bralorne Au mine in southern British Columbia, Canada, and compares the behavior of Sb with that of As. The Upper Peter mineralization consists of native Au in quartz-carbonate veins with 1 wt.% sulfides dominated by pyrite and arsenopyrite although stibnite, the primary Sb-bearing sulfide mineral, can be locally significant. Dissolved Sb concentrations can reach up to 349 μg L−1 in the mine pool. Sediments were collected for detailed geochemical and mineralogical characterization at locations along the 350-m flow path, which includes a 100-m shallow channel within the adit, a sediment settling pond about 45 m beyond the adit portal and an open wetland another 120 m farther downstream. From the mine pool to the wetland outlet, dissolved Sb in the drainage drops from 199 μg L−1 to below the detection limit due to the combined effect of dilution and removal from solution. Speciation analyses using X-ray absorption near-edge structure (XANES) spectroscopy indicate that Sb(III)–S accounts for around 70% of total Sb in the sediments in the main pool at the far end of the adit. At a short distance (24 m) downstream of the main adit pool, however, Sb(III)–O and Sb(V)–O species represent ?50% of total Sb in the bulk sediments, indicating significant oxidation of the primary sulfides inside the adit. Although Sb appears largely oxidized in the bulk samples collected near the portal, Sb(III)–S species are nevertheless present in the <53-μm fraction, suggesting a higher oxidation rate for stibnite in the coarser grains, possibly due to galvanic interaction with pyrite. Secondary Sb species released from the sulfide oxidation are most likely sorbed/co-precipitated with Fe-, Mn-, and Al-oxyhydroxides along the flow channel in the adit and in the sediment settling pond, with the Fe phase being the dominant sink for Sb.  相似文献   
94.
The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum-likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historical data.  相似文献   
95.
Microtextural changes brought about by heating alkali feldspar crystals from the Shap granite, northern England, at atmospheric pressure, have been studied using transmission and scanning electron microscopy. A typical unheated phenocryst from Shap is composed of about 70 vol% of tweed orthoclase with strain-controlled coherent or semicoherent micro- and crypto-perthitic albite lamellae, with maximum lamellar thicknesses <1 μm. Semicoherent lamellae are encircled by nanotunnel loops in two orientations and cut by pull-apart cracks. The average bulk composition of this microtexture is Ab27.6Or71.8An0.6. The remaining 30 vol% is deuterically coarsened, microporous patch and vein perthite composed of incoherent subgrains of oligoclase, albite and irregular microcline. The largest subgrains are ~3 μm in diameter. Heating times in the laboratory were 12 to 6,792 h and T from 300°C into the melting interval at 1,100°C. Most samples were annealed at constant T but two were heated to simulate an 40Ar/39Ar step-heating schedule. Homogenisation of strain-controlled lamellae by Na↔K inter-diffusion was rapid, so that in all run products at >700°C, and after >48 h at 700°C, all such regions were essentially compositionally homogeneous, as indicated by X-ray analyses at fine scale in the transmission electron microscope. Changes in lamellar thickness with time at different T point to an activation energy of ~350 kJmol−1. A lamella which homogenised after 6,800 h at 600°C, therefore, would have required only 0.6 s to do so in the melting interval at 1,100°C. Subgrains in patch perthite homogenised more slowly than coherent lamellae and chemical gradients in patches persisted for >5,000 h at 700°C. Homogenisation T is in agreement with experimentally determined solvi for coherent ordered intergrowths, when a 50–100°C increase in T for An1 is applied. Homogenisation of lamellae appears to proceed in an unexpected manner: two smooth interfaces, microstructurally sharp, advance from the original interfaces toward the mid-line of each twinned, semicoherent lamella. In places, the homogenisation interfaces have shapes reflecting the local arrangements of nanotunnels or pull-aparts. Analyses confirm that the change in alkali composition is also relatively sharp at these interfaces. Si–Al disordering is far slower than alkali homogenisation so that tweed texture in orthoclase, tartan twinning in irregular microcline, and Albite twins in albite lamellae and patches persisted in all our experiments, including 5,478 h at 700°C, 148 h at 1,000°C and 5 h at 1,100°C, even though the ensemble in each case was chemically homogeneous. Nanotunnels and pull-aparts were modified after only 50 min at 500°C following the simulated 40Ar/39Ar step-heating schedule. New features called ‘slots’ developed away from albite lamellae, often with planar traces linking slots to the closest lamella. Slot arrays were often aligned along ghost-like regions of diffraction contrast which may mark the original edges of lamellae. We suggest that the slot arrays result from healing of pull-aparts containing fluid. At 700°C and above, the dominant defects were subspherical ‘bubbles’, which evolved from slots or from regions of deuteric coarsening. The small degree of partial melting observed after 5 h at 1,100°C was often in the vicinity of bubbles. Larger micropores, which formed at subgrain boundaries in patch perthite during deuteric coarsening, retain their shape up to the melting point, as do the subgrain boundaries themselves. It is clear that modification of defects providing potential fast pathways for diffusion in granitic alkali feldspars begins below 500°C and that defect character progressively changes up to, and beyond, the onset of melting.  相似文献   
96.
The adoption of endangered species laws in various nations has intensified efforts to better understand, and protect, at-risk species or populations, and their habitats. In many countries, delineating a portion of a species' habitat as particularly worthy of protection has become a mantra of these laws. Unfortunately, the laws themselves often provide scientists and managers with few, if any, guidelines for how to define such habitat. Conservationists and scientists may view protecting part of the habitat of an endangered species as an ineffectual compromise, while managers may be under pressure to allow a range of human activities within the species' habitat. In the case of small cetaceans, establishing boundaries for such areas can also be complicated by their mobility, the fluid nature of their environment, and the often ephemeral nature of their habitat features. The convergence of multiple human impacts in coastal waters around the world is impacting many small cetaceans (and other species) that rely on these areas for feeding, reproducing, and resting. The ten guiding principles presented here provide a means to characterize the habitat needs of small, at-risk cetaceans, and serve as a basis for the delineation of ‘priority habitat’ boundaries. This conceptual approach should facilitate a constructive discourse between scientists and managers engaged in efforts to recover endangered species. The degree to which the recovery of an at-risk species can be reconciled with sustainable economic activity will depend in part on how well these principles are incorporated into the delineation of priority habitat.  相似文献   
97.
In 2008 the US Government listed the polar bear as “threatened” under the US Endangered Species Act, largely due to scientific analyses of climate change data and polar bear distribution conducted by the US Geological Survey (USGS), which projected a 2/3 reduction in the polar bear population within the next 40 years. In 2009 the US Government announced that it would submit a proposal to the 15th Conference of the Parties to the Convention on International Trade in Endangered Species of Wild Fauna and Flora to uplist polar bears from CITES Appendix II to Appendix I. A report produced by the IUCN/Traffic stated that this was not warranted. However, the IUCN/Traffic report did not consider the USGS data noted above. Ultimately the proposal for CITES uplisting failed. In this paper we examine the differences in the IUCN/Traffic report and the best available science, and conclude that listing polar bears under CITES Appendix I was scientifically warranted.  相似文献   
98.
In gravel‐bed rivers, the microtopography of the bed is known to exert a significant influence on the generation of turbulent flow structures that owe their origin to fluid shear generated near the bed. Although field and laboratory measurements have indicated that flows over gravel beds contain a range of coherent flow structures, the kinematic and dynamic properties of these structures are still poorly understood. This paper describes a new experimental methodology to quantify simultaneously both the kinematic and dynamic characteristics of coherent flow structures based upon combined planar laser‐induced fluorescence and particle imaging velocimetry (PLIF‐PIV). The results confirm that the primary generative mechanism of coherent flow structures is at the bed, where merging hairpin vortices form around bed clasts and generate larger‐scale fluid motions that advect downstream. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
99.
The Bralorne and Pioneer mines, now inactive, produced over 4 million ounces of Au from an orogenic lode Au deposit located on the eastern edge of the Coastal Mountains of SW British Columbia. Between 2007 and 2009, drainage from a recently developed exploration adit was investigated in order to better understand and anticipate potential environmental management issues associated with the development of this type of deposit in the future. Portal discharge rate and specific conductance were monitored continuously over a 14-month period during which 36 water samples were collected. Additional samples were collected from flooded workings within the adit. Concentrations of As and Sb at the portal range as high as 1738 and 316 μg/L, respectively, while those in the mine pool reach 3304 and 349 μg/L, respectively. Effluent chemistry is mildly alkaline (pH = 8.7) and is dominated by Na, Ca, Mg, HCO3 and SO4. Geochemical inverse modeling of effluent composition indicates weathering of albite (2515 kg/a), ferroan dolomite (718 kg/a), pyrite (456 kg/a), arsenopyrite (23 kg/a) and stibnite (2 kg/a). Modeled sulfide reaction coefficients, normalized by their corresponding host rock concentrations, suggest that oxidation of arsenopyrite is 25 times slower than that of pyrite whereas oxidation of stibnite is 1.5 times faster. Oxidative dissolution of arsenopyrite and stibnite releases 10.6 kg/a of As and 1.1 kg/a of Sb of which 57% and 46%, respectively, are sorbed to ferrihydrite and gibbsite on the bed of the shallow channel through which the mine pool drains to the portal. Although mass balance calculations predict the formation of sufficient ferrihydrite to sorb 100% of the As dissolved in the mine pool, this attenuation process was ineffective possibly because the precipitated sorbents settled to the bottom of the water column or because of competition for sorption sites from Ca and HCO3. The dissolved Sb/As molar ratio in portal effluent (0.082) is much greater than the Sb/As ratio of the mineralization (0.002) because of slower arsenopyrite oxidation and somewhat lesser sorption of Sb.  相似文献   
100.
Recent field and modeling investigations have examined the fluvial dynamics of confluent meander bends where a straight tributary channel enters a meandering river at the apex of a bend with a 90° junction angle. Past work on confluences with asymmetrical and symmetrical planforms has shown that the angle of tributary entry has a strong influence on mutual deflection of confluent flows and the spatial extent of confluence hydrodynamic and morphodynamic features. This paper examines three‐dimensional flow structure and bed morphology for incoming flows with high and low momentum‐flux ratios at two large, natural confluent meander bends that have different tributary entry angles. At the high‐angle (90°) confluent meander bend, mutual deflection of converging flows abruptly turns fluid from the lateral tributary into the downstream channel and flow in the main river is deflected away from the outer bank of the bend by a bar that extends downstream of the junction corner along the inner bank of the tributary. Two counter‐rotating helical cells inherited from upstream flow curvature flank the mixing interface, which overlies a central pool. A large influx of sediment to the confluence from a meander cutoff immediately upstream has produced substantial morphologic change during large, tributary‐dominant discharge events, resulting in displacement of the pool inward and substantial erosion of the point bar in the main channel. In contrast, flow deflection is less pronounced at the low‐angle (36°) confluent meander bend, where the converging flows are nearly parallel to one another upon entering the confluence. A large helical cell imparted from upstream flow curvature in the main river occupies most of the downstream channel for prevailing low momentum‐flux ratio conditions and a weak counter‐rotating cell forms during infrequent tributary‐dominant flow events. Bed morphology remains relatively stable and does not exhibit extensive scour that often occurs at confluences with concordant beds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号