首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   749篇
  免费   73篇
测绘学   23篇
大气科学   54篇
地球物理   251篇
地质学   227篇
海洋学   56篇
天文学   177篇
综合类   2篇
自然地理   32篇
  2023年   3篇
  2022年   4篇
  2021年   10篇
  2020年   17篇
  2019年   12篇
  2018年   38篇
  2017年   42篇
  2016年   39篇
  2015年   34篇
  2014年   43篇
  2013年   32篇
  2012年   36篇
  2011年   45篇
  2010年   46篇
  2009年   49篇
  2008年   32篇
  2007年   40篇
  2006年   21篇
  2005年   17篇
  2004年   29篇
  2003年   19篇
  2002年   22篇
  2001年   22篇
  2000年   13篇
  1999年   14篇
  1998年   15篇
  1997年   9篇
  1996年   6篇
  1995年   12篇
  1994年   4篇
  1993年   13篇
  1992年   4篇
  1991年   5篇
  1989年   5篇
  1987年   3篇
  1986年   5篇
  1983年   3篇
  1982年   3篇
  1980年   6篇
  1979年   5篇
  1978年   7篇
  1977年   2篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1971年   3篇
  1969年   3篇
  1968年   2篇
  1955年   3篇
排序方式: 共有822条查询结果,搜索用时 718 毫秒
231.
 The role of carbon dioxide in the dynamics of magma ascent in explosive eruptions is investigated by means of numerical modeling. The model is steady, one-dimensional, and isothermal; it calculates the separated flow of gas and a homogeneous mixture of liquid magma and crystals. The magma properties are calculated on the basis of magma composition and crystal content and are allowed to change along the conduit due to pressure decrease and gas exsolution. The effect of the presence of a two-component (water + carbon dioxide) exsolving gas phase is investigated by performing a parametric study on the CO2/(H2O+CO2) ratio, which is allowed to vary from 0 to 0.5 at either constant total volatile or constant water content. The relatively insoluble carbon dioxide component plays an important role in the location of the volatile-saturation and magma-fragmentation levels and in the distribution of the flow variables in the volcanic conduit. In detail, the results show that an increase of the proportion of carbon dioxide produces a decrease of the mass flow rate, pressure, and exit mixture density, and an increase of the exit gas volume fraction and depth of the fragmentation level. A relevant result is the different role played by water and carbon dioxide in the eruption dynamics; an increasing amount of water produces an increase of the mass flow rate, and an increasing amount of carbon dioxide produces a decrease. Even small amounts of carbon dioxide have major consequences on the eruption dynamics, implying that the multicomponent nature of the volcanic gas must be taken into account in the prediction of the eruption scenario and the forecasting of volcanic hazard. Received: 6 March 1998 / Accepted: 28 October 1998  相似文献   
232.
Average spectral acceleration, AvgSA, is defined as the geometric mean of spectral acceleration values over a range of periods and it is a ground motion intensity measure used for structural response prediction. One of its advantages stands on the assumption that its distribution is computable from the available GMPEs for spectral acceleration, GMPE-SA, (called here indirect method) without the need for deriving new specific GMPEs for AvgSA, GMPE-AvgSA, (called here direct method). To what extent this assumption is valid, however, has never been verified. As such, we derived an empirical GMPE-AvgSA based on RESORCE ground motion dataset and we compared its predicted values with those from a GMPE-SA via the indirect approach. As expected, the results show that the indirect approach yields median AvgSA estimates that are identical to those of the direct approach. However, the estimates of AvgSA variance of the two methods are identical only if both the GMPE-SA and their empirical correlation coefficients among different SA ordinates are derived from the same record dataset.  相似文献   
233.
The simplified mechanical method POST (PushOver on Shear Type models) for seismic vulnerability assessment of RC buildings is used in this study to derive damage scenarios for a database of 7597 RC buildings subjected to the 2009 L’Aquila earthquake. POST allows the evaluation of fragility curves through the determination of the non-linear static response of RC buildings in closed form, assuming the hypothesis of shear type behaviour, and considering the influence of infill panels both in the derivation of structural response and in assessment of building damage, which is defined according to the European Macroseismic Scale EMS-98. The aim of the present study is to provide a much more significant and reliable validation of the methodology, thanks to a much wider database compared to previous studies, and based on a different application of the methodology, i.e. at building class-level instead of single building-level. To this aim, the main geometrical-typological characteristics of the analysed buildings (number of storeys, age of construction, building area) have been statistically characterized based on data collected from post-earthquake AeDES survey forms, considering both the variability of each single parameter and the correlation that exists between one parameter and the other. This also allows to analyse the effectiveness of the adopted analytical procedure in predicting the general trends of observed damage with these parameters, showing a good agreement between observed and predicted trends. The overall predicted damage scenarios are compared with the corresponding observed ones, collected from AeDES survey forms, highlighting, again, a good agreement. Finally, the assumed mechanical interpretation of damage classification of EMS-98 is validated through the comparison between the distributions of damage to vertical structures and infill panels and the corresponding observed post-earthquake damage data.  相似文献   
234.
A design procedure for seismic retrofitting of concentrically and eccentrically braced frame buildings is proposed and validated in this paper. Rocking walls are added to the existing system to ensure an almost uniform distribution of the interstorey displacement in elevation. To achieve direct and efficient control over the seismic performance, the design procedure is founded on the displacement‐based approach and makes use of overdamped elastic response spectra. The top displacement capacity of the building is evaluated based on a rigid lateral deformed configuration of the structure and on the ductility capacity of the dissipative members of the braced frames. The equivalent viscous damping ratio of the braced structure with rocking walls is calculated based on semi‐empirical relationships specifically calibrated in this paper for concentrically and eccentrically braced frames. If the equivalent viscous damping ratio of the structure is lower than the required equivalent viscous damping ratio, viscous dampers are added and arranged between the rocking walls and adjacent reaction columns. The design internal forces of the rocking walls are evaluated considering the contributions of more than one mode of vibration. The proposed design procedure is applied to a large set of archetype braced frame buildings and its effectiveness verified by nonlinear dynamic analysis.  相似文献   
235.
236.
Pulse-like records are well recognized for their potential to impose higher demands on structures when compared with ordinary records. The increased severity of the structural response usually caused by pulse-like records is commonly attributed to the spectral increment around the pulse period. By comparing the building response to sets of spectrally equivalent pulse-like and ordinary records, we show that there are characteristics of pulse-like records beyond the shape of the acceleration response spectrum that affect the results of nonlinear dynamic analysis. Nevertheless, spectral shape together with the ratio of pulse period to the first-mode structural period, Tp/T1, are confirmed as “sufficient” predictors for deformation and acceleration response metrics in a building, conditioned on the seismic intensity. Furthermore, the average spectral acceleration over a period range, AvgSA, is shown to incorporate to a good proxy for spectral shape, and together with Tp/T1, form an efficient and sufficient intensity measure for response prediction to pulse-like ground motions. Following this latter route, we propose a record selection scheme that maintains the consistency of Tp with the hazard of the site but uses AvgSA to account for the response sensitivity to spectral shape.  相似文献   
237.
Reinforced concrete columns with non‐ductile detailing typically exhibit a softening behavior characterized by severe degradation when subjected to cyclic lateral loads. Whether the response is brittle or ductile, shear failure occurs with an inclined through crack along which sliding occurs coupled with loss of horizontal and vertical load‐bearing capacity of the member. The rapid loss of resistance after the peak strength is reached is because of one or more of the following local failure mechanisms: brittle failure of poorly confined concrete; buckling of longitudinal reinforcing bars because of lack of adequate transverse reinforcement or following opening of stirrups after spalling of cover concrete; bond failure. In this study, a modeling strategy to build a detailed 3D finite element model capable of capturing all of the above‐mentioned local failure mechanisms is presented. In particular, a steel–concrete interface model for representing the interaction within the member between concrete core, cover and longitudinal and transverse reinforcement is proposed. Comparison with results of an experimental test of a shear‐sensitive column demonstrates the effectiveness of the simulation up to failure of the element. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
238.
Shallow tidal environments (e.g. bays, estuaries, lagoons) represent one of the most productive ecosystems in the world, and they are threatened by current climate change and increasing human pressure. Monitoring the bio-morphodynamic evolution of these environments is therefore a crucial task that requires a detailed and holistic scrutiny. The present study aims to investigate the temperature of the water–sediment continuum, its effect on the related microphytobenthos (MPB) growth and the related bio-stabilization of the bed sediment surface under different water depth and water turbidity conditions. We investigated the vertical energy transfer and the temperature dynamics by applying a 1-D model to a shallow coastal lagoon. Our results show that the water temperature does not substantially change under different turbidity conditions, whereas the sediment temperature exhibits important changes. Two major factors driving the MPB photosynthetic growth are the sediment surface temperature and the light availability at the sediment bed, which can both be computed using the vertical energy transfer model. We observed that, in general, clear water conditions better promote MPB growth over the entire year. The limiting factor for the photosynthetic process is usually the light availability at the bottom, which increases under clear water conditions. As MPB provides a bio-stabilizing effect on the bed sediments by producing a biofilm on the sediment surface that reduces sediment resuspension, our results suggest a positive feedback between MPB growth and water column turbidity. Furthermore, MPB growth and the related sediment bio-stabilization are clearly affected by the seasonal variation of surface sediment temperature and light availability. This seasonal variation of MPB growth rate and surface sediment bio-stabilization must be considered when studying the long-term morphodynamic evolution of tidal environments. © 2018 John Wiley & Sons Ltd.  相似文献   
239.
Immediately after an earthquake a healthcare system within a city, comprising several hospitals, endures an extraordinary demand. This paper proposes a new methodology to estimate whether the hospital network has enough capacity to withstand the emergency caused by an earthquake. The ability of healthcare facilities and to provide a broad spectrum of emergency services immediately after a seismic event is assessed through a metamodel that assumes waiting time as main response parameter to assess the hospital network performance. The First Aid network of San Francisco subjected to a 7.2 Mw magnitude earthquake has been used as case study. The total number of injuries and their distributions among the six major San Francisco's Emergency Departments have been assessed and compared with their capacity that has been determined using a survey conducted by the medical staff of the hospitals. The numerical results have shown that three of the six considered San Francisco's hospitals cannot provide emergency services to the estimated injured. Two alternatives have been proposed to improve the performance of the network. The first one redistributes existing resources while the second one considers additional resources by designing a new Emergency Department.  相似文献   
240.
In recent years, the additional risk posed to the built environment due to aftershock sequences and triggered events has been brought to attention, and several efforts have been directed towards developing fragility functions for structures in damaged conditions. Despite this rise of interest, a rather fundamental component for such tasks, namely that of aftershock ground motion record selection, has remained under-scrutinized. Herein, we propose a pragmatic procedure that can be applied for the selection of mainshock-aftershock ground motion pairs using consistent causal parameters and accounting for the correlation between their spectral accelerations. In addition, a structural analysis strategy that can be employed for the analytical derivation of damage-dependent fragility functions is outlined and presented through a case study. A more conventional back-to-back IDA analysis is also carried out in order to compare the derived damage-dependent fragility functions with the ones obtained with the proposed procedure. The results indicate that record selection remains a crucial factor even when assessing the structural vulnerability of damaged buildings, and should thus be treated cautiously.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号