首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2723篇
  免费   74篇
  国内免费   51篇
测绘学   279篇
大气科学   256篇
地球物理   495篇
地质学   1248篇
海洋学   130篇
天文学   335篇
综合类   49篇
自然地理   56篇
  2023年   16篇
  2022年   52篇
  2021年   64篇
  2020年   65篇
  2019年   67篇
  2018年   245篇
  2017年   227篇
  2016年   217篇
  2015年   129篇
  2014年   189篇
  2013年   250篇
  2012年   155篇
  2011年   153篇
  2010年   131篇
  2009年   132篇
  2008年   116篇
  2007年   72篇
  2006年   68篇
  2005年   48篇
  2004年   37篇
  2003年   30篇
  2002年   23篇
  2001年   18篇
  2000年   27篇
  1999年   18篇
  1998年   16篇
  1997年   16篇
  1996年   9篇
  1995年   9篇
  1994年   19篇
  1993年   13篇
  1992年   6篇
  1991年   24篇
  1990年   18篇
  1989年   14篇
  1988年   10篇
  1987年   17篇
  1986年   14篇
  1985年   15篇
  1984年   11篇
  1982年   6篇
  1980年   5篇
  1979年   8篇
  1978年   5篇
  1975年   6篇
  1974年   11篇
  1973年   5篇
  1972年   8篇
  1971年   5篇
  1969年   5篇
排序方式: 共有2848条查询结果,搜索用时 15 毫秒
421.
Environmental pollution due to heavy metals has become a significant drawback as a result of their ecotoxicity. Hence, their remediation is of pressing concern. Many technologies are planned for their remediation; however, most of them are highly expensive and result in incomplete removal of contaminants. So, massive attention has paid to the event and application of the latest biologically techniques, that is effective in remedy and cost, not harming the prevailing surroundings. Hence, application of biosurfactant in heavy metal remediation is one among the recent ecofriendly technique. The present review critically highlights bacterial biosurfactants as a best alternative technique for heavy metals remediation. The review also emphasizes that bacterial biosurfactants can open up a new vista in remediation of metal-contaminated soil.  相似文献   
422.
The sustainability of water resources mainly depends on planning and management of land use; a small change in it may affect water yield largely, as both are linked through relevant hydrological processes, explicitly. However, human activities, especially a significant increase in population, in-migration and accelerated socio-economic activities, are constantly modifying the land use and land cover (LULC) pattern. The impact of such changes in LULC on the hydrological regime of a basin is of widespread concern and a great challenge to the water resource engineers. While studying these impacts, the issue that prevails is the selection of a hydrological model that may be able to accommodate spatial and temporal dynamics of the basin with higher accuracy. Therefore, in the present study, the capabilities of variable infiltration capacity hydrological model to hydrologically simulate the basin under varying LULC scenarios have been investigated. For the present analysis, the Pennar River Basin, Andhra Pradesh, which falls under a water scarce region in India, has been chosen. The water balance components such as runoff potential, evapotranspiration (ET) and baseflow of Pennar Basin have been simulated under different LULC scenarios to study the impact of change on hydrological regime of a basin. Majorly, increase in built-up (13.94% approx.) and decrease in deciduous forest cover (2.44%) are the significant changes observed in the basin during the last three decades. It was found that the impact of LULC change on hydrology is balancing out at basin scale (considering the entire basin, while routing the runoff at the basin outlet). Therefore, an analysis on spatial variation in each of the water balance components considered in the study was done at grid scale. It was observed that the impact of LULC is considerable spatially at grid level, and the maximum increase of 265 mm (1985–2005) and the decrease of 48 mm (1985–1995) in runoff generation at grid were estimated. On the contrary, ET component showed the maximum increase of 400 and decrease of 570 mm under different LULC change scenario. Similarly, in the base flow parameter, an increase of 70 mm and the decrease of 100 mm were observed. It was noticed that the upper basin is showing an increasing trend in almost all hydrological components as compared to the lower basin. Based on this basin scale study, it was concluded that change in the land cover alters the hydrology; however, it needs to be studied at finer spatial scale rather than the entire basin as a whole. The information like the spatial variation in hydrological components may be very useful for local authority and decision-makers to plan mitigation strategies accordingly.  相似文献   
423.
The present study aims to discuss the hydrogeochemical processes in the Aosta Valley region and assess the quality of its groundwater for suitability of drinking and irrigation purposes. One hundred twenty-two samples were collected from the Aosta Valley region in the years 2007 and 2008 (61 per year), and analysed for pH, electrical conductivity, total dissolved solids (TDS), total hardness, major cations and anions. The pH of the samples in both years indicated a near-neutral to alkaline nature of the groundwater. The cation and anion chemistry showed the general ionic abundance as: Ca2+ > Mg2+ > Na+ > K+ and HCO3 ?>SO4 2?>Cl?>NO3 ?>F? in both years. Ca2+-Mg2+-HCO3 ? and Ca2+-Mg2+-Cl?-SO4 2? were the dominant hydrogeochemical facies. The computed saturation indices demonstrated that the groundwater was supersaturated with respect to dolomite and calcite in both years. The groundwater chemistry of the study area was mainly controlled by the dissolution of carbonate, sulphate and silicate minerals, as well as ion exchange processes. A comparison of the groundwater quality in relation to drinking water standards showed that most of the water samples were suitable for drinking and domestic uses. The computed water quality index (WQI) values of the study area groundwater ranged from 24 to 84 in the year 2007 and from 22 to 82 in the year 2008, and all the location fell under the Excellent to Good category. Quality assessment for irrigation uses revealed that the groundwater was good to permissible quality for irrigation; however, locally higher salinity, residual sodium carbonate (RSC) and magnesium hazard (MH) restricted its suitability for irrigation at a few sites. These results will be useful in implementing future measures in groundwater resource management at regional and national level.  相似文献   
424.
Monoclinic materials viz. quartz, lithium niobate and lithium tantalate are among the most abundant materials, finding numerous applications throughout the technological world. Moreover, the presence of irregularity, initial stresses, anisotropy and heterogeneity in a material medium is obvious. These facts motivate the study of magnetoelastic SH-wave propagation in an irregular monoclinic sandwiched layer between a heterogeneous isotropic layer and an isotropic half space, all under initial stress. The heterogeneity in the uppermost layer is caused due to exponential variation in rigidity, density and initial stress in terms of space variable pointing vertically downward. The dispersion relation has been obtained using first-order perturbation technique. The substantial effect of wave number, anisotropy, irregularity, width ratio of the layers, horizontal compressive/tensile initial stresses, heterogeneity and monoclinic-magnetoelastic coupling parameter associated with sandwiched layer on phase velocity of SH-wave has been studied and depicted by means of graph. Comparative study made for the case when pre-stressed irregular sandwiched layer is monoclinic-magnetoelastic to the case when it is isotropic magnetoelastic layer is one of the major highlights of the current study.  相似文献   
425.
The present study assesses the impact of coal mining on surface and groundwater resources of Korba Coalfield, Central India. Accordingly, water samples collected from various sources are analyzed for major ions, trace elements, and other mine effluent parameters. Results show that the groundwater samples are slightly acidic, whereas river water and mine water samples are mildly alkaline. Elevated concentrations of Ca2+, Na+, HCO3 ?, and SO4 2? alongside the molar ratios (Ca2++Mg2+)/(SO4 2?+HCO3 ?) <1 and Na+/Cl? >1 suggest that silicate weathering (water-rock interaction) coupled with ion exchange are dominant solute acquisition processes controlling the chemistry of groundwater in the study area. The overall hydrogeochemistry of the area is dominated by two major hydrogeochemical facies (i.e., Ca–Cl–SO4 and Ca–HCO3). Analysis of groundwater and river water quality index (GRWQI) elucidates that majority (82%) of samples are of “excellent” to “good” category, and the remaining 12% are of “poor” quality. Similarly, the effluent water quality index (EWQI) indicates that 6 out of 8 samples belong to excellent quality. Concentration of trace element constituents such as As, Zn, Cu, Cr, and Cd is found to be well within the stipulated limits for potable use, except for Fe, Mn, and Pb. Suitability of water samples for irrigation purpose, established using standard tools like Wilcox and USSL diagrams, reveal “excellent to permissible” category for majority of the samples. The present study also substantiates the effectiveness of the measures implemented for the treatment of mine effluent water.  相似文献   
426.
The West Coast belt, consisting of nearly 60 thermal springs, is one of the most diversified geothermal fields in India. The present work describes the multi-isotopic (O, H, C, S, B and Sr) characterization of thermal waters carried out in the Tural-Rajwadi geothermal field, situated in southern sector of the west coast geothermal area. The aim of this study is to delineate the origin of thermal water as well as to ascertain the sources of carbon, sulphur, boron and strontium dissolved in those thermal springs. The stable isotopes (δ2H and δ18O) and tritium data indicate that these thermal springs are not recently recharged rain water rather, it contains very old component of water. Oxygen-18 shift is observed due to rock-water interaction over a long period of time. Carbon isotopic composition of DIC points out to the silicate weathering with soil CO2 coming from C3 type of plants whereas δ34S of dissolved sulphate confirms the marine origin of sulphate. This marine signature is basically derived from paleo-seawater possibly entrapped within the flows. Boron isotopic data reveals that both the seawater and rock dissolution are the sources of boron in the thermal waters whereas high 87Sr/86Sr ratios (0.7220–0.7512) of the thermal waters conclusively establishes that archean granitic basement is the predominant rock source of strontium, not the Deccan flood basalts. In addition, like strontium, concentrations of lithium, rubidium and caesium are also governed by the rock-water interaction. Thus, the combined use of this multi-isotope technique coupled with trace element concentrations proves to be an effective tool to establish the sources of solutes in the thermal water.  相似文献   
427.
Soil erosion, a serious environmental problem, is a global challenge. Once a portion of a fertile soil is lost, it is very difficult to replace it, and this leads to decrease in crop production, damage to drainage networks, and siltation of dams and reservoirs. Human practices like intensive agriculture, overgrazing, and deforestation have intensified the rate of soil erosion all over the world. The Jhelum basin which forms the north-western part of the complex mountain system Himalayas is not only highly vulnerable to natural hazards like earthquakes, landslides, and floods but is also highly susceptible to soil erosion. There is an immediate need to device strategies to reduce adverse impacts of soil erosion and to conserve natural resources like soil, water, and forests by means of proper watershed management programs in the Himalayan region. The present study is carried out for eight upper watersheds of Jhelum basin, an area which are facing serious issues like boulder extraction, deforestation, and unplanned urbanization. The present work demonstrates the use of morphometry, land use, and slope coupled with the multicriteria analytical (MCA) framework to estimate the soil erosion susceptibility of these watersheds using Remote Sensing and Geographical Information System techniques. The present study revealed that out of eight upper watersheds, Arapal, Lidder, and Bringi fall in high priority and need immediate attention and measures to reduce soil erosion in the area. Sandran, Rembiara, and Romshii fall in medium priority. Kuthar and Vishav fall in the low-priority category and are least susceptible to soil erosion.  相似文献   
428.
Boundary faults associated with thick sedimentary basins are more often curved in cross section rather than planar. We develop a space domain-based automatic gravity inversion technique to quantify such listric fault sources from a set of observed gravity anomalies. The density contrast within the hanging wall of fault morphology is presumed to be known according to a prescribed exponential law. Furthermore, the fault plane is described by a polynomial function of arbitrary but specific degree, whose coefficients become the unknown parameters to be estimated from a set of observed gravity anomalies in addition to the thickness of the fault structure. Using a set of characteristic anomalies, the present inversion identifies approximate parameters pertaining to the origin of fault plane and depth to decollement horizon. Based on the errors between the observed and model gravity anomalies of the structure, the algorithm constructs and solves a system of normal equations to estimate the improvements in depth and coefficients of the polynomial in an iterative approach until one of the specified convergence criteria is fulfilled. The efficacy of the algorithm is shown with the analysis of gravity anomalies attributable to a synthetic model of a listric fault source in the presence of pseudorandom noise. Application of the proposed inversion technique on the observed gravity anomalies of the Ahri-Cherla master fault of the Godavari subbasin in India using the derived exponential density contrast model has yielded an interpretation that is consistent with the available/reported information.  相似文献   
429.
Groundwater levels in hard-rock areas in India have shown very large declines in the recent past. The situation is becoming more critical due to a paucity of rainfall, limited surface water resources and an increasing pattern of groundwater extraction in these areas. Consequently, the Ground Water Department with the aid of World Bank has implemented the water structuring programme to mitigate groundwater scarcity and to develop a viable solution for sustainable development in the region. The present study has been undertaken to assess the impact of artificial groundwater recharge structures in the hard-rock area of Rajasthan, India. In this study groundwater level data (pre-monsoon and post-monsoon) of 85 dug-wells are used, spread over an area of 413.59 km2. The weathered and fractured gneissic basement rocks act as major aquifer in the area. Spatial maps for pre- and post-monsoon groundwater levels were prepared using the kriging interpolation technique with best fitted semi-variogram models (Spherical, Exponential and Gaussian). The groundwater recharge is calculated spatially using the water level fluctuation method. The entire study period (2004–2011) is divided into pre- (2004–2008) and post-intervention (2009–2011) periods. Based on the identical nature of total monsoon rainfall, two combinations of average (2007 and 2009) and more than average (2006 and 2010) rainfall years are selected from the pre- and post-intervention periods for further comparisons. All of the water harvesting structures are grouped into the following categories: as anicuts (masonry overflow structure); percolation tanks; subsurface barriers; and renovation of earthen ponds/nadis. A buffer of 100 m around the intervention site is taken for assessing the influence of these structures on groundwater recharge. The relationship between the monsoon rainfall and groundwater recharge is fitted by power and exponential functions for the periods of 2004–2008 and 2008–2011 with R 2 values of 0.95 and 0.98, respectively. The average groundwater recharge is found to be 18% of total monsoon rainfall prior to intervention and it became 28% during the post-intervention period. About 70.9% (293.43 km2) of the area during average rainfall and more than 95% (396.26 km2) of the area during above-average rainfalls show an increase in groundwater recharge after construction of water harvesting structures. The groundwater recharge pattern indicates a positive impact within the vicinity of intervention sites during both average and above-average rainfall. The anicuts are found to be the most effective recharge structures during periods of above-average rainfall, while subsurface barriers are responded well during average rainfall periods. In the hard-rock terrain, water harvesting structures produce significant increases in groundwater recharge. The geo-spatial techniques that are used are effective for evaluating the response of different artificial groundwater recharge techniques.  相似文献   
430.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号