首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110298篇
  免费   2181篇
  国内免费   988篇
测绘学   3057篇
大气科学   8442篇
地球物理   23075篇
地质学   37513篇
海洋学   9389篇
天文学   24405篇
综合类   260篇
自然地理   7326篇
  2020年   849篇
  2019年   952篇
  2018年   1915篇
  2017年   1830篇
  2016年   2524篇
  2015年   1675篇
  2014年   2505篇
  2013年   5375篇
  2012年   2712篇
  2011年   3882篇
  2010年   3423篇
  2009年   4780篇
  2008年   4287篇
  2007年   4057篇
  2006年   4068篇
  2005年   3318篇
  2004年   3406篇
  2003年   3223篇
  2002年   3150篇
  2001年   2785篇
  2000年   2702篇
  1999年   2378篇
  1998年   2350篇
  1997年   2348篇
  1996年   2011篇
  1995年   1937篇
  1994年   1764篇
  1993年   1611篇
  1992年   1496篇
  1991年   1359篇
  1990年   1539篇
  1989年   1389篇
  1988年   1272篇
  1987年   1519篇
  1986年   1343篇
  1985年   1681篇
  1984年   1966篇
  1983年   1830篇
  1982年   1699篇
  1981年   1603篇
  1980年   1442篇
  1979年   1386篇
  1978年   1441篇
  1977年   1283篇
  1976年   1252篇
  1975年   1174篇
  1974年   1167篇
  1973年   1229篇
  1972年   788篇
  1971年   696篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
901.
Migmatites produced by low-pressure anatexis of basic dykes are found in a contact metamorphic aureole around a pyroxenite–gabbro intrusion (PX2), on Fuerteventura. Dykes outside and inside the aureole record interaction with meteoric water, with low or negative δ18O whole-rock values (+0.2 to −3.4‰), decreasing towards the contact. Recrystallised plagioclase, diopside, biotite and oxides, from within the aureole, show a similar evolution with lowest δ18O values (−2.8, −4.2, −4.4 and −7.6‰, respectively) in the migmatite zone, close to the intrusion. Relict clinopyroxene phenocrysts preserved in all dykes, retain typically magmatic δ18O values up to the anatectic zone, where the values are lower and more heterogeneous. Low δ18O values, decreasing towards the intrusion, can be ascribed to the advection of meteoric water during magma emplacement, with increasing fluid/rock ratios (higher dyke intensities towards the intrusion acting as fluid-pathways) and higher temperatures promoting increasing exchange during recrystallisation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
902.
Historical evidence shows block breakdown and collapse are actively occurring in large fault aligned caverns in the Yorkshire Dales karst. Deployment of ground penetrating radar at two such sites has provided detailed images of the sedimentary sequences below the present day cavern floor but no large blocks are imaged within the sediments. Solutional processes must be removing limestone from the sediment to allow continued cavern growth. Possible mechanisms to account for the lack of large blocks within the sediment fill are discussed.  相似文献   
903.
Deep dissolution affects great part of soluble rocks (e.g. gypsum and anhydrite) of the Western Italian Alps. The related superficial phenomena (sinkholes, gravity-induced processes and a local worsening of geomechanical rock properties) are not limited to typical karsts landscape and cause slope instability also affecting populated sites and infrastructures. The paper aims to describe general characteristic of dissolution phenomena, to interpret their conditioning factors and evolutionary stages and to assess possible hazards due to their superficial effects.The search for evidences of deep dissolution leads to the selection of representative sites in the central part of the Western Italian Alps (Piemonte and Valle d'Aosta Region). Detailed geological and geomorphological studies have been used to classify the selected sites by type, size and variable state of activity. Very different evolutionary stages of dissolution phenomena have been interpreted by comparison of case-studies: some are early “embryonic”; others are more evolved, up to typical sinkholes, or even remodelled by other phenomena. Some cases show an extreme complexity in the interactions between corrosion phenomena and other geomorphic processes: slope deformations, from one side, and karst, fluvial and glacial phenomena, to the other. A wide range of movement rates on slope instabilities induced by deep dissolution have been estimated by topographic and geomorphic data. Geochemical data on removed rocks by dissolution indicate 0.4 mm/year values for local subsidence. Historical and technical data indicate low frequency of major dissolution-induced collapses, but highlight widespread damages to tunnels, roads and buildings, especially along slopes.  相似文献   
904.
The current practice of slope stability analysis for a municipal solid waste (MSW) landfill usually overlooks the dependence of waste properties on the fill age or embedment depth. Changes in shear strength of MSW as a function of fill age were investigated by performing field and laboratory studies on the Suzhou landfill in China. The field study included sampling from five boreholes advanced to the bottom of the landfill, cone penetration tests and monitoring of pore fluid pressures. Twenty-six borehole samples representative of different fill ages (0 to 13 years) were used to perform drained triaxial compression tests. The field and laboratory study showed that the waste body in the landfill can be sub-divided into several strata corresponding to different ranges of fill age. Each of the waste strata has individual composition and shear strength characteristics. The triaxial test results showed that the MSW samples exhibited a strain-hardening and contractive behavior. As the fill age of the waste increased from 1.7 years to 11 years, the cohesion mobilized at a strain level of 10% was found to decrease from 23.3 kPa to 0 kPa, and the mobilized friction angle at the same strain level increasing from 9.9° to 26°. For a confinement stress level greater than 50 kPa, the shear strength of the recently-placed MSW seemed to be lower than that of the older MSW. This behavior was consistent with the cone penetration test results. The field measurement of pore pressures revealed a perched leachate mound above an intermediate cover of soils and a substantial leachate mound near the bottom of the landfill. The measurements of shear strength properties and pore pressures were utilized to assess the slope stability of the Suzhou landfill.  相似文献   
905.
In situ oxygen isotopic measurements of primary and secondary minerals in Type C CAIs from the Allende CV3 chondrite reveal that the pattern of relative enrichments and depletions of 16O in the primary minerals within each individual CAI are similar to the patterns observed in Types A and B CAIs from the same meteorite. Spinel is consistently the most 16O-rich (Δ17O = −25‰ to −15‰), followed by Al,Ti-dioside (Δ17O = −20‰ to −5‰) and anorthite (Δ17O = −15‰ to 0‰). Melilite is the most 16O-depleted primary mineral (Δ17O = −5‰ to −3‰). We conclude that the original melting event that formed Type C CAIs occurred in a 16O-rich (Δ17O  −20‰) nebular gas and they subsequently experienced oxygen isotopic exchange in a 16O-poor reservoir. At least three of these (ABC, TS26F1 and 93) experienced remelting at the time and place where chondrules were forming, trapping and partially assimilating 16O-poor chondrule fragments. The observation that the pyroxene is 16O-rich relative to the feldspar, even though the feldspar preceded it in the igneous crystallization sequence, disproves the class of CAI isotopic exchange models in which partial melting of a 16O-rich solid in a 16O-poor gas is followed by slow crystallization in that gas. For the typical (not associated with chondrule materials) Type C CAIs as well for as the Types A and B CAIs, the exchange that produced internal isotopic heterogeneity within each CAI must have occurred largely in the solid state. The secondary phases grossular, monticellite and forsterite commonly have similar oxygen isotopic compositions to the melilite and anorthite they replace, but in one case (CAI 160) grossular is 16O-enriched (Δ17O = −10‰ to −6‰) relative to melilite (Δ17O = −5‰ to −3‰), meaning that the melilite and anorthite must have exchanged its oxygen subsequent to secondary alteration. This isotopic exchange in melilite and anorthite likely occurred on the CV parent asteroid, possibly during fluid-assisted thermal metamorphism.  相似文献   
906.
Thirty-four silicate and oxide inclusions large enough for in situ WDS electron microprobe analysis were exposed by grinding/polishing of 19 diamonds from the Kelsey Lake Mine in the Colorado-Wyoming State Line Kimberlite district. Eighteen olivines, seven Cr-pyropes, four Mg-chromites, and one orthopyroxene in 15 stones belong to the peridotite (P) suite and three garnets and one omphacite in three stones belong to the eclogite (E) suite. The fact that this suite is dominated by the peridotite population is in stark contrast to the other diamond suites studied in the State Line district (Sloan, George Creek), which are overwhelmingly eclogitic. Kelsey Lake olivine inclusions are magnesian (17 of 18 grains in 9 stones are in the range Fo 92.7-93.1), typical of harzburgitic P-suite stones worldwide, but unlike the more Fe-rich (lherzolitic) Sloan olivine suite. Mg-chromites (wt% MgO = 12.8-13.8; wt% Cr2O3 = 61.4-66.6) are in the lower MgO range of diamond inclusion chromites worldwide. Seven harzburgitic Cr-pyropes in five stones have moderately low calcium contents (wt% CaO = 3.3-4.3) but are very Cr-rich (wt% Cr2O3 = 9.7-16.7). A few stones have been analyzed by SIMS for carbon isotope composition and nitrogen abundance. One peridotitic stone is apparently homogeneous in carbon isotope composition (δ13CPDB = −6.2‰) but with variable nitrogen abundance (1296-2550 ppm). Carbon isotopes in eclogitic stones range from “normal” for the upper mantle (δ13CPDB = −5.5‰) to somewhat low (δ13CPDB = −10.2‰), with little internal variation in individual stones (maximum difference is 3.6‰). Nitrogen contents (2-779 ppm) are lower than in the peridotitic stone, and are lower in cores than in rims. As, worldwide, harzburgite-suite diamonds have been shown to have formed in Archean time, we suggest that the Kelsey Lake diamond population was derived from a block of Archean lithosphere that, at the time of kimberlite eruption, existed beneath the Proterozoic Yavapai province. The mixed diamond inclusion populations from the State Line kimberlites appear to support models in which volumes of Wyoming Craton Archean mantle survive buried beneath Proterozoic continental crust. Such material may be mixed with eclogitic/lherzolitic regimes emplaced beneath or intermingled with the Archean rocks by Proterozoic subduction.  相似文献   
907.
The voluminous 2.5 Ga banded iron formations (BIFs) from the Hamersley Basin (Australia) and Transvaal Craton (South Africa) record an extensive period of Fe redox cycling. The major Fe-bearing minerals in the Hamersley-Transvaal BIFs, magnetite and siderite, did not form in Fe isotope equilibrium, but instead reflect distinct formation pathways. The near-zero average δ56Fe values for magnetite record a strong inheritance from Fe3+ oxide/hydroxide precursors that formed in the upper water column through complete or near-complete oxidation. Transformation of the Fe3+ oxide/hydroxide precursors to magnetite occurred through several diagenetic processes that produced a range of δ56Fe values: (1) addition of marine hydrothermal , (2) complete reduction by bacterial dissimilatory iron reduction (DIR), and (3) interaction with excess that had low δ56Fe values and was produced by DIR. Most siderite has slightly negative δ56Fe values of ∼ −0.5‰ that indicate equilibrium with Late Archean seawater, although some very negative δ56Fe values may record DIR. Support for an important role of DIR in siderite formation in BIFs comes from previously published C isotope data on siderite, which may be explained as a mixture of C from bacterial and seawater sources.Several factors likely contributed to the important role that DIR played in BIF formation, including high rates of ferric oxide/hydroxide formation in the upper water column, delivery of organic carbon produced by photosynthesis, and low clastic input. We infer that DIR-driven Fe redox cycling was much more important at this time than in modern marine systems. The low pyrite contents of magnetite- and siderite-facies BIFs suggests that bacterial sulfate reduction was minor, at least in the environments of BIF formation, and the absence of sulfide was important in preserving magnetite and siderite in the BIFs, minerals that are poorly preserved in the modern marine record. The paucity of negative δ56Fe values in older (Early Archean) and younger (Early Proterozoic) BIFs suggests that the extensive 2.5 Ga Hamersley-Transvaal BIFs may record a period of maximum expansion of DIR in Earth’s history.  相似文献   
908.
ATR-FTIR spectroscopy is used to understand the adsorption of uranyl-citrate complexes to Al2O3. Spectral data indicate that uranyl-citrate complexes partially dissociate upon adsorption, allowing full or partial hydrolysis of the uranyl ion. Kads values determined for free citrate adsorption are similar to those for citrate in uranyl-citrate complexes, indicating that the complexation of uranyl by citrate does not significantly affect the ability of citrate to bond with the surface. The isotherm data also indicate enhanced citrate adsorption to Al2O3 in the presence of uranyl, suggesting that uranyl may be the central link between two citrate ligands, and that uranyl is associated with the surface through a bridging citrate ligand. Finally, uranyl-citrate complexes interact with citrate adsorbed to Al2O3 through outer sphere interactions.  相似文献   
909.
We have combined metal-silicate partitioning data from the literature with new experimental results at 1.5-8 GPa and 1480-2000 °C to parameterize the effects of pressure, temperature and composition on the partitioning of V, Cr and Nb between liquid Fe metal (with low S and C content) and silicate melt.Using information from the steelmaking literature to correct for interactions in the metal phase, we find that, for peridotitic silicate melts, metal-silicate partition coefficients are given by:
  相似文献   
910.
Most magmas proposed as parental to the Martian SNC meteorites are high in iron and low in alumina. Yet, experiments at low pressures on such liquids have not produced the cumulate or melt-inclusion assemblages seen in the chassignite meteorites. Therefore, elevated pressure experiments under anhydrous and hydrous (water-undersaturated) conditions were conducted on a high-Fe, low-Al liquid proposed to be parental to the Chassigny meteorite. These experiments failed to produce the most magnesian cumulate phases, as well as the olivine hosted kaersutite-bearing melt-inclusion assemblage, of the chassignites. These results suggest that the parental liquid to the chassignite meteorites is both more magnesium and aluminum-rich than the previously considered composition (A; Johnson et al., 1991). The proposed composition is similar to the Martian Adirondack class Gusev basalt Humphrey and suggests a link between the Chassigny meteorite and rocks on the surface of Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号