首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84409篇
  免费   1404篇
  国内免费   837篇
测绘学   2390篇
大气科学   6084篇
地球物理   16594篇
地质学   29338篇
海洋学   7590篇
天文学   20036篇
综合类   280篇
自然地理   4338篇
  2022年   479篇
  2021年   828篇
  2020年   910篇
  2019年   1014篇
  2018年   2212篇
  2017年   2084篇
  2016年   2653篇
  2015年   1453篇
  2014年   2502篇
  2013年   4321篇
  2012年   2672篇
  2011年   3481篇
  2010年   3100篇
  2009年   4101篇
  2008年   3530篇
  2007年   3609篇
  2006年   3374篇
  2005年   2509篇
  2004年   2562篇
  2003年   2400篇
  2002年   2358篇
  2001年   2079篇
  2000年   1976篇
  1999年   1679篇
  1998年   1714篇
  1997年   1637篇
  1996年   1367篇
  1995年   1314篇
  1994年   1163篇
  1993年   1045篇
  1992年   974篇
  1991年   978篇
  1990年   995篇
  1989年   890篇
  1988年   851篇
  1987年   944篇
  1986年   869篇
  1985年   1045篇
  1984年   1236篇
  1983年   1061篇
  1982年   1038篇
  1981年   934篇
  1980年   846篇
  1979年   825篇
  1978年   839篇
  1977年   695篇
  1976年   648篇
  1975年   656篇
  1974年   596篇
  1973年   663篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
191.
We compute the emission of gravitational radiation from the merging of a close white dwarf binary system. This is done for a wide range of masses and compositions of the white dwarfs, ranging from mergers involving two He white dwarfs, through mergers in which two CO white dwarfs coalesce, to mergers in which a massive ONe white dwarf is involved. In doing so we follow the evolution of the binary system using a smoothed particle hydrodynamics code. Even though the coalescence process of the white dwarfs involves considerable masses, moving at relatively high velocities with a high degree of asymmetry we find that the signature of the merger is not very strong. In fact, the most prominent feature of the coalescence is that in a relatively small time-scale (of the order of the period of the last stable orbit, typically a few minutes) the sources stop emitting gravitational waves. We also discuss the possible implications of our calculations for the detection of the coalescence within the framework of future space-borne interferometers like LISA.  相似文献   
192.
193.
194.
Spectra of the central core and surrounding coma of Comet IRAS-Araki-Alcock (1983d) were obtained at 8–13 μm on 11 May and 2–4 μm on 12 May 1983. Spatially resolved measurements at 10 μm with a 4-arcsec beam showed that the central core was more than 100 times brighter than the inner coma only 8 arcsec away; for radially outflowing dust, the brightness ratio would be a factor of 8. The observations of the central core are consistent with direct detection of a nucleus having a radius of approximately 5 km. The temperature of the sunlit hemisphere was > 300 K. Spectra of the core are featureless, while spectra of the coma suggest weak silicate emission. The spectra show no evidence for icy grains. The dust producton rate on 11.4 May was ~ 105 g/sec, assuming that the gas flux from the dust-producing areas on the nucleus was ~ 10?5 g/cm2/sec.  相似文献   
195.
196.
In the coastal and estuarine waters of Goa, particulate organic carbon (POC) varied from 0.52 to 2.51 mg l?1 and from 0.28 to 5.24 mg l?1 and particulate phosphorus (PP) varied from 0.71 to 5.18 μg l?1 and from 0.78 to 20.34 μg l?1, respectively. The mean values of chlorophyll and primary productivity were 1.94 mg m?3 and 938.1 mg C m?2 day?1 in the coastal waters and 4.3 mg m?3 and 636.5 mg C m?1 day?1 in the estuarine waters, respectively.POCchl ratios were low in June and October even when POC values were quite high. The POC in surface waters was linearly correlated with the chlorophyll content. Also PP increased when chlorophyll and primary productivity remained high. The results suggest that the phytoplankton was sharply increasing and contributed to POC and PP content. The percentage of detritus calculated from the intercept values of chlorophyll on POC varied from 46 to 76% depending on season. Results indicate that the major portion of POC and PP during postmonsoon (October–January) is derived from phytoplankton production while the allochthonous matter predominate during monsoon (June–September).  相似文献   
197.
198.
The statistical results presented by Achong and Stahl (1984) may alternatively be interpreted as demonstrating a strong dependence of SID flare production on Mt. Wilson magnetic class of the parent sunspot group.  相似文献   
199.
The Apollo orbital geochemistry, photogeologic, and other remote sensing data sets were used to identify and characterize geochemical anomalies on the eastern limb and farside of the Moon and to investigate the processes responsible for their formation. The anomalies are located in the following regions: (1) Balmer basin, (2) terrain northeast of Mare Smythii, (3) near Langemak crater, (4) Pasteur crater, (5) terrain northwest of Milne basin, (6) northeast of Mendeleev basin, (7) north and northeast of Korolev basin, (8) terrain north of Taruntius crater, and (9) terrain north of Orientale basin. The anomalies are commonly associated with Imbrian- or Nectarian-aged light plains units which exhibit dark-haloed impact craters. The results of recent spectral reflectance studies of dark-haloed impact craters plus consideration of the surface chemistry of the anomalies strongly indicate that those geochemical anomalies associated with light plains deposits which display dark-haloed impact craters result from the presence of basaltic units that are either covered by varying thickness of highland debris or have a surface contaminated with significant amounts of highlands material. The burial or contamination of ancient volcanic surfaces by varying amounts of highland material appears to have been an important (though not the dominant) process in the formation of lunar light plains. Basaltic volcanism on the eastern limb and farside of the Moon was more extensive in both space and time than has been accepted.  相似文献   
200.
We have studied the science rationale, goals and requirements for a mission aimed at using the gravitational lensing from the Sun as a way of achieving high angular resolution and high signal amplification. We find that such a mission concept is compromised by several practical problems. Most severe are the effects due to the plasma in the solar atmosphere which cause refraction and scattering of the propagating rays. These effects either limit the frequencies that can be observed to those above ∼1 THz, or they move the optical point outwards beyond the vacuum value of ≥550 au. (Thus for observing frequency of 300 GHz the optical point is moved outwards to ∼ 680 au.) Density fluctuations in the inner solar atmosphere will further cause random pathlength differences for different rays. The corrections for the radiation from the Sun itself will also be a major challenge at any wavelength used, but could be mitigated with coronographic techniques. Given reasonable constraints on the spacecraft (particularly in terms of size and propulsion), source selection as well as severe navigational constraints further add to the difficulties for a potential mission. Nevertheless, unbiased surveys of small-scale structure on the sky at short wavelengths might be the most promising application of such a mission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号