首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   1篇
  国内免费   3篇
测绘学   5篇
大气科学   7篇
地球物理   12篇
地质学   43篇
海洋学   1篇
天文学   1篇
自然地理   5篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   8篇
  2016年   4篇
  2015年   6篇
  2014年   10篇
  2013年   7篇
  2012年   1篇
  2011年   3篇
  2009年   2篇
  2008年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
61.
    
We have conducted a case study to investigate the performance of support vector machine, multivariate adaptive regression splines, and random forest time series methods in snowfall modeling. These models were applied to a data set of monthly snowfall collected during six cold months at Hamadan Airport sample station located in the Zagros Mountain Range in Iran. We considered monthly data of snowfall from 1981 to 2008 during the period from October/November to April/May as the training set and the data from 2009 to 2015 as the testing set. The root mean square errors (RMSE), mean absolute errors (MAE), determination coefficient (R 2), coefficient of efficiency (E%), and intra-class correlation coefficient (ICC) statistics were used as evaluation criteria. Our results indicated that the random forest time series model outperformed the support vector machine and multivariate adaptive regression splines models in predicting monthly snowfall in terms of several criteria. The RMSE, MAE, R 2, E, and ICC for the testing set were 7.84, 5.52, 0.92, 0.89, and 0.93, respectively. The overall results indicated that the random forest time series model could be successfully used to estimate monthly snowfall values. Moreover, the support vector machine model showed substantial performance as well, suggesting it may also be applied to forecast snowfall in this area.  相似文献   
62.
Formulation and algorithmic treatment of a rate‐dependent plastic–damage model modified to capture large tensile cracking in cyclic‐loaded concrete structures are presented in detail for a three‐dimensional implementation. The plastic–damage model proposed by Lee and Fenves in 1998 was founded based on isotropic damaged elasticity in combination with isotropic multi‐hardening plasticity to simulate cracking and crushing of concrete under cyclic or dynamic loadings. In order that the model can capture large crack opening displacements, which are inevitable in plain concrete structures, the excessive increase in plastic strain causing unrealistic results in cyclic behaviors is prevented when the tensile plastic–damage variable controlling the evolution of tensile damage is larger than a critical value. In such a condition, the crack opening/closing mechanism becomes similar to discrete cracking. The consistent tangent operator required to accelerate convergence rate is also formulated for the large cracking state including viscoplasticity. The validation and performance of the modified algorithm implemented in a special finite element program is exemplified through several single‐element tests as well as three structural applications. The last example examines the model in the seismic fracture analysis of Koyna dam as a benchmark problem and the resulting crack profile is compared with the available experiment. The numerical experimentations well demonstrate that the developed model whose modification is necessary to properly simulate the cyclic behavior of plain concrete subjected to large tensile strains is robust and reasonably accurate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
63.
64.
Ore deposits are usually composed of rock units or facies with different grade distributions and complex spatial structures. Being able to simulate the spatial layout of these facies are essential to have a comprehensive mining plan and an accurate resources and reserves evaluation. Modelers are faced with a set of challenges when creating the facies model such as: reproducing the facies proportions and spatial continuity as well as the topological contacts between facies, capturing post depositional overprinting, and honoring the data obtained from drill holes. Plurigaussian simulation (PGS) is a geostatistical approach that allows covering these challenges. This study addresses the application of PGS to Sungun porphyry copper deposit (Iran), in order to simulate the layout of three facies: mineralized porphyry and skarn and non-mineralized dykes. The aim of this study is to construct numerical models in which the dyke structures reflect the evolution observed in the geology.  相似文献   
65.
    
Geotechnical and Geological Engineering - In this study, improvement rate of engineering properties of expansive soils caused by the effect of varying curing temperature together with the addition...  相似文献   
66.
    
The El Niño-Southern Oscillation (ENSO) is a major component of the Earth's climate that largely influences global climate variability through long-distance teleconnections. Rossby wave trains emerging from the tropical convection and their propagation into extratropical regions are the key mechanism for tropical and extratropical teleconnections. Despite significant progress in the understanding of ENSO teleconnections over the recent past decades, several important issues have remained to be addressed. The global atmospheric teleconnections of ENSO vary substantially with the seasonal cycle, on the decadal timescale, and under the influence of global warming. It is essential to separate the internal decadal variability of ENSO teleconnections from changes caused by the external forcing of global warming. However, the post-satellite observations are not long enough to compose a large number of ENSO events to distinguish the decadal variability of ENSO teleconnections from changes related to increasing greenhouse concentrations. The current climate models also suffer from common biases, such that they are unable to properly reproduce both the tropical mean state and some features of ENSO. Nevertheless, observational records can be extended back in time via reconstruction methods. Efforts have also already been made to remove some main common biases of climate models and to improve the representation of ENSO characteristics. The reliable reconstructed data along with a large number of ensemble members of the improved climate model simulations can be applied to advance our understanding of ENSO global teleconnections and their responses to internal decadal variability and externally forced global warming. This article is categorized under:
  • Paleoclimates and Current Trends > Modern Climate Change
  • Climate Models and Modeling > Earth System Models
  • Assessing Impacts of Climate Change > Evaluating Future Impacts of Climate Change
  相似文献   
67.
68.
The analytical hierarchy process (AHP) is one of the most effective methods for criteria ranking/weighting to have been successfully incorporated into GIS analyses. We present a new method for optimizing pairwise comparison decision-making matrices in AHP method, which has been developed on the basis of an interval pairwise comparison matrix (IPCM) derived from expert knowledge. The method has been used for criteria ranking in land subsidence susceptibility mapping (LSSM) as a practical test case, for which an interval matrix was generated by pairwise comparison. To compare the capability of the AHP method (a traditional approach) with that of the proposed IPCM method (a novel approach), 11 creations of LSSM were ranked using each approach in turn. The criteria weightings obtained were then used to produce LSSM maps based on each of these approaches. The results were tested against a data set of known land subsidence occurrences, indicating an improvement in accuracy of about 14% in the LSSM map that was developed using the IPCM method. This improvement was achieved by minimizing the uncertainty associated with criteria ranking/weighting in a traditional AHP and could form a basis for future research into minimizing the uncertainty in weightings derived using the AHP method. Our results will be of considerable importance for researchers involved in GIS-based multi-criteria decision analysis (MCDA) and those dealing with GIS-based spatial decision-making methods.  相似文献   
69.
Sequential Gaussian simulation is one of the most widespread algorithms for simulating regionalized variables in the earth sciences. Simplicity and flexibility of this algorithm are the most important reasons that make it popular, but its implementation is highly dependent on a screen effect approximation that allows users to use a moving neighborhood instead of a unique neighborhood. Because of this, the size of the moving neighborhood the number of conditioning data and the size of variogram range are important in the simulation process and should be chosen carefully. In this work, different synthetic and real case studies are presented to show the effect of the neighborhood size the number of conditioning data and the size of variogram range on the simulation result, with respect to the reproduction of the model first and second-order parameters. Results indicate that, in both conditional and non-conditional simulation cases, using a neighborhood with <50 conditioning data may lead to an inaccurate reproduction of the model statistics, and some cases require considering more than 200 conditioning data. It also can be understood from the result of example 3 that when the variogram range is beg compared to the simulation domain determination of inaccurate simulation program is harder.  相似文献   
70.
An accurate estimation of mineral grades in ore deposits with heterogeneous spatial variations requires defining geological domains that differentiate the types of mineralogy, alteration and lithology. Deterministic models define the layout of the domains based on the interpretation of the drill holes and do not take into account the uncertainty in areas with fewer data. Plurigaussian simulation (PGS) can be an alternative to generate multiple numerical models of the ore body, with the aim of assessing the uncertainty in the domain boundaries and improving the geological controls in the characterization of quantitative attributes. This study addresses the application of PGS to Sungun porphyry copper deposit (Iran), in order to simulate the layout of four hypogene alteration zones: potassic, phyllic, propylitic and argillic. The aim of this study is to construct numerical models in which the alteration structures reflect the evolution observed in the geology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号