首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   860篇
  免费   31篇
  国内免费   4篇
测绘学   55篇
大气科学   72篇
地球物理   178篇
地质学   335篇
海洋学   30篇
天文学   133篇
综合类   11篇
自然地理   81篇
  2023年   4篇
  2022年   9篇
  2021年   14篇
  2020年   13篇
  2019年   23篇
  2018年   24篇
  2017年   20篇
  2016年   36篇
  2015年   27篇
  2014年   32篇
  2013年   69篇
  2012年   42篇
  2011年   31篇
  2010年   38篇
  2009年   49篇
  2008年   34篇
  2007年   35篇
  2006年   31篇
  2005年   43篇
  2004年   30篇
  2003年   29篇
  2002年   30篇
  2001年   22篇
  2000年   22篇
  1999年   16篇
  1998年   12篇
  1997年   12篇
  1996年   8篇
  1995年   9篇
  1994年   3篇
  1993年   5篇
  1991年   3篇
  1990年   6篇
  1989年   5篇
  1987年   7篇
  1986年   3篇
  1984年   3篇
  1982年   4篇
  1980年   9篇
  1979年   6篇
  1978年   8篇
  1977年   4篇
  1974年   4篇
  1973年   3篇
  1957年   3篇
  1956年   4篇
  1953年   2篇
  1951年   3篇
  1948年   5篇
  1928年   2篇
排序方式: 共有895条查询结果,搜索用时 109 毫秒
881.
The diffusion, substitution mechanism and solubility limits of Zr and Hf in synthetic forsterite (Mg2SiO4) and San Carlos olivine (Mg0.9Fe0.1)2SiO4 have been investigated between 1,200 and 1,500 °C as a function of the chemical potentials of the components in the system MgO(FeO)–SiO2–ZrO2(HfO2). The effect of oxygen fugacity and crystallographic orientation were also investigated. The solubilities of Zr in forsterite are highest and diffusion fastest when the coexisting three-phase source assemblage includes ZrSiO4 (zircon) or HfSiO4 (hafnon), and lower and slower, respectively, when the source assemblage includes MgO (periclase). This indicates that Zr and Hf substitute on the octahedral sites in olivine, charge balanced by magnesium vacancies. Diffusion is anisotropic, with rates along the crystal axes increasing in the order a < b < c. The generalized diffusion relationship as a function of chemical activity (as \(a_{{{\text{SiO}}_{2} }}\)), orientation and temperature is: \(logD_{\text{Zr}} = \frac{1}{4}loga_{{{\text{SiO}}_{2} }} + logD_{0} - \left( {\frac{{368 \pm 17\;{\text{kJ}}\;{\text{mol}}^{ - 1} }}{{2.303\;{\text{RT}}}}} \right)\) where the values of log D 0 are ?3.8(±0.5), ?3.4(±0.5) and ?3.1(±0.5) along the a, b and c axes, respectively. Most experiments were conducted in air (fO2 = 10?0.68 bars), but one at fO2 = 10?11.2 bars at 1,400 °C shows no resolvable effect of oxygen fugacity on Zr diffusion. Hf is slightly more soluble in olivine than Zr, but diffuses slightly slower. Diffusivities of Zr in experiments in San Carlos olivine at 1,400 °C, fO2 = 10?6.6 bars are similar to those in forsterite at the same conditions, showing that the controls on diffusivities are adequately captured by the simple system (nominally iron-free) experiments. Diffusivities are in good agreement with those measured by Spandler and O’Neill (Contrib Miner Petrol 159:791–818, 2010) in San Carlos olivine using silicate melt as the source at 1,300 °C, and fall within the range of most measurements of Fe–Mg inter-diffusion in olivine at this temperature. Forsterite–melt partitioning experiments in the CaO–MgO–Al2O3–SiO2–ZrO2/HfO2 show that the interface concentrations from the diffusion experiments represent true equilibrium solubilities. Another test of internal consistency is that the ratios of the interface concentrations between experiments buffered by Mg2SiO4 + Mg2Si2O6 + ZrSiO4 or Mg2SiO4 + ZrSiO4 + ZrO2 (high silica activity) to those buffered by Mg2SiO4 + MgO + ZrO2 (low silica activity) agree well with the ratios calculated from thermodynamic data. This study highlights the importance of buffering chemical potentials in diffusion experiments to provide constraints on the interface diffusant concentrations and hence validate the assumption of interface equilibrium.  相似文献   
882.
Climate sensitivity estimated from ensemble simulations of glacial climate   总被引:1,自引:0,他引:1  
The concentration of greenhouse gases (GHGs) in the atmosphere continues to rise, hence estimating the climate system’s sensitivity to changes in GHG concentration is of vital importance. Uncertainty in climate sensitivity is a main source of uncertainty in projections of future climate change. Here we present a new approach for constraining this key uncertainty by combining ensemble simulations of the last glacial maximum (LGM) with paleo-data. For this purpose we used a climate model of intermediate complexity to perform a large set of equilibrium runs for (1) pre-industrial boundary conditions, (2) doubled CO2 concentrations, and (3) a complete set of glacial forcings (including dust and vegetation changes). Using proxy-data from the LGM at low and high latitudes we constrain the set of realistic model versions and thus climate sensitivity. We show that irrespective of uncertainties in model parameters and feedback strengths, in our model a close link exists between the simulated warming due to a doubling of CO2, and the cooling obtained for the LGM. Our results agree with recent studies that annual mean data-constraints from present day climate prove to not rule out climate sensitivities above the widely assumed sensitivity range of 1.5–4.5°C (Houghton et al. 2001). Based on our inferred close relationship between past and future temperature evolution, our study suggests that paleo-climatic data can help to reduce uncertainty in future climate projections. Our inferred uncertainty range for climate sensitivity, constrained by paleo-data, is 1.2–4.3°C and thus almost identical to the IPCC estimate. When additionally accounting for potential structural uncertainties inferred from other models the upper limit increases by about 1°C.  相似文献   
883.
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were measured in the dissolved and suspended particulate phase in the sea-surface microlayer (SML) and subsurface water (SSW) collected from Hong Kong's coastal environment. The concentration ranges (pg/L) for summation sigmaHCHs, summation sigmaDDTs and summation sigmaPCBs in the SSW dissolved phase (DP i.e. sum of truly dissolved and colloidal phase) were 409-940 (mean 602), 774-5583 (mean 1908) and 266-433 (mean 278), respectively. The concentration ranges (pg/L) for summation sigmaHCHs, summation sigmaDDTs and summation sigmaPCBs in SSW suspended particulate matter (SPM) were <5-85 (mean 59), 358-1369 (mean 787) and 85.6-273 (mean 172), respectively. The enrichment factor of PCBs and OCPs in the SML varied between 1.1 and 4.5 for the DP, and 0.4-8.2 for the SPM. The distribution of contaminants between DP and SPM in both the SML and SSW indicates that particulate matter plays an important role in the distribution and fate of DDTs and PCBs, but not for HCH isomers. The Pearl River Estuary is likely to be a major source of contaminants transported to Hong Kong.  相似文献   
884.
Elevated groundwater salinity associated with produced water, leaching from landfills or secondary salinity can degrade arable soils and potable water resources. Direct-push electrical conductivity (EC) profiling enables rapid, relatively inexpensive, high-resolution in-situ measurements of subsurface salinity, without requiring core collection or installation of groundwater wells. However, because the direct-push tool measures the bulk EC of both solid and liquid phases (ECa), incorporation of ECa data into regional or historical groundwater data sets requires the prediction of pore water EC (ECw) or chloride (Cl?) concentrations from measured ECa. Statistical linear regression and physically based models for predicting ECw and Cl? from ECa profiles were tested on a brine plume in central Saskatchewan, Canada. A linear relationship between ECa/ECw and porosity was more accurate for predicting ECw and Cl? concentrations than a power-law relationship (Archie’s Law). Despite clay contents of up to 96%, the addition of terms to account for electrical conductance in the solid phase did not improve model predictions. In the absence of porosity data, statistical linear regression models adequately predicted ECw and Cl? concentrations from direct-push ECa profiles (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl? = 1,978 ECa – 1,398, R 2 = 0.73). These statistical models can be used to predict ECw in the absence of lithologic data and will be particularly useful for initial site assessments. The more accurate linear physically based model can be used to predict ECw and Cl? as porosity data become available and the site-specific ECw–Cl? relationship is determined.  相似文献   
885.
A 26-year simulation (1980–2005) was performed with the Weather Research and Forecast (WRF) model over the Volta Basin in West Africa. This was to investigate the ability of a climate version of WRF to reproduce present day temperature and precipitation over the Volta Basin. The ERA-Interim reanalysis and one realization of the ECHAM6 global circulation model (GCM) data were dynamically downscaled using two nested domains within the WRF model. The outer domain had a horizontal resolution of 50 km and covered the whole of West Africa while the inner domain had a horizontal resolution of 10 km. It was observed that biases in the respective forcing data were carried over to the RCM, but also the RCM itself contributed to the mean bias of the model. Also, the biases in the 50-km domain were transferred unchanged, especially in the case of temperature, to the 10-km domain, but, for precipitation, the higher-resolution simulations increased the mean bias in some cases. While in general, WRF underestimated temperature in both the outer (mean biases of ?1.6 and ?2.3 K for ERA-Interim and ECHAM6, respectively) and the inner (mean biases of ?0.9 K for the reanalysis and ?1.8 K for the GCM) domains, WRF slightly underestimated precipitation in the coarser domain but overestimated precipitation in the finer domain over the Volta Basin. The performance of the GCM, in general, is good, particularly for temperature with mean bias of ?0.7 K over the outer domain. However, for precipitation, the added value of the RCM cannot be overlooked, especially over the whole West African region on the annual time scale (mean biases of ?3% for WRF and ?8% for ECHAM6). Over the whole Volta Basin and the Soudano-Sahel for the month of April and spring (MAM) rainfall, respectively, mean bias close to 0% was simulated. Biases in the interannual variability in both temperature and precipitation over the basin were smaller in the WRF than the ECHAM6. High spatial pattern correlations between 0.7 and 0.8 were achieved for the autumn precipitation and low spatial correlation in the range of 0.0 and 0.2 for the winter season precipitation over the whole basin and all the three belts over the basin.  相似文献   
886.
Fine extinction bands (FEBs) (also known as deformation lamellae) visible with polarized light microscopy in quartz consist of a range of nanostructures, inferring different formation processes. Previous transmission electron microscopy studies have shown that most FEB nanostructures in naturally deformed quartz are elongated subgrains formed by recovery of dislocation slip bands. Here we show that three types of FEB nanostructure occur in naturally deformed vein quartz from the low-grade metamorphic High-Ardenne slate belt (Belgium). Prismatic oriented FEBs are defined by bands of dislocation walls. Dauphiné twin boundaries present along the FEB boundaries probably formed after FEB formation. In an example of two sub-rhombohedral oriented FEBs, developed as two sets in one grain, the finer FEB set consists of elongated subgrains, similar to FEBs described in previous transmission electron microscopy studies. The second wider FEB set consists of bands with different dislocation density and fluid-inclusion content. The wider FEB set is interpreted as bands with different plastic strain associated with the primary growth banding of the vein quartz grain. The nanometre-scale fluid inclusions are interpreted to have formed from structurally bounded hydroxyl groups that moreover facilitated formation of the elongate subgrains. Larger fluid inclusions aligned along FEBs are explained by fluid-inclusion redistribution along dislocation cores. The prismatic FEB nanostructure and the relation between FEBs and growth bands have not been recognized before, although related structures have been reported in experimentally deformed quartz.  相似文献   
887.
The synthesis of illite mixed-layer minerals at surface conditions is possible through precipitation of Al hydroxides from Si-, Mg- and K-containing solutions. It has been shown that amorphous hydroxides of Al, Fe, etc. are capable of coprecipitating silica even from very dilute solutions. By aging of these X-ray amorphous hydroxide—silica precipitates under certain conditions, clay minerals can be synthesized at low temperatures. The presence of Mg particularly favors the formation of three-layer clay minerals. Mg-rich Al hydroxide—silica precipitates permit formation of tri- and di-octahedral smectite, illite and chlorite. The formation of three-layer clay minerals is only possible when the precipitates contain at least 6% MgO. The precipitates stay amorphous if the Mg content is lower. The adsorption of Mg and K on the hydroxide—silica precipitate controls the illite or montmorillonite portion in the mixture of the three-layer silicates. There is a competition for K and Mg adsorption on the hydroxide—silica precipitates. Higher K concentration inhibits the three-layer mineral formation through the lowering of the Mg content in the precipitates. Illite mineral formation is favored under certain K/Mg ratios. Higher NaCl contents do not favor the three-layer mineral formation.The enrichment of Mg and K in the precipitates is not as large as the enrichment of Si in the hydroxides. This means that the illite mineral formation is only possible from solutions with a high-salt content like seawater.  相似文献   
888.
Silicon isotope ratios (δ30Si) of bulk mineral materials in soil integrate effects from both silicon sources and processing. Here we report δ30Si values from a climate gradient of Hawaiian soils developed on 170 ka basalt and relate them to patterns of soil chemistry and mineralogy. The results demonstrate informative relationships between the mass fraction of soil Si depletion and δ30Si. In upper (<1 m deep) soil horizons along the climate gradient, Si depletion correlates with decreases of residual δ30Si values in low rainfall soils and increases in high rainfall soils. Strong positive correlation between soil δ30Si and dust-derived quartz and mica content show that both trends are largely controlled by the abundance of these weathering-resistant minerals. The data also lend support to the idea that fractionation of Si isotopes in secondary phases is controlled by partitioning of silicon between dissolved and precipitated products during the initial weathering of primary basalt. Secondary mineral δ30Si values from lower (>1 m deep) soil horizons generally correlate with the isotope fractionation predicted by a study of dissolved Si in basalt-watershed rivers and driven by preferential 28Si removal from the dissolved phase during precipitation. In contrast, after correcting for the influence of dust, secondary mineral Si depletion and δ30Si values in shallow (<1 m deep) soil horizons showed evidence of biocycling induced Si redistribution and substantially lower δ30Si values than predicted. Low δ30Si values in shallow soil horizons compared to predictions can be attributed to repeated fractionation as secondary minerals undergo additional cycles of dissolution and precipitation. Primary mineral weathering, secondary mineral weathering, dust accumulation, and biocycling are major processes in terrestrial Si cycling and these results demonstrate that each can be traced by δ30Si values interpreted in conjunction with mineralogy and measures of Si depletion.  相似文献   
889.
. Granular zero-valent iron was used for the treatment of groundwater pollution caused by chlorinated ethylenes, mainly TCE, cis-DCE and VC at an industrial site. The rapidly decreasing rates of de-chlorination in the initial phase were attributed to the precipitation of carbonates and the development of hydrogen by anaerobic corrosion. After 70 pore volumes, sulphate was reduced by bacteria. From this point in time, the degradation of TCE was slightly accelerated whereas the de-chlorination rates of the other chlorinated ethylenes decreased only slowly. This relative improvement was assumed to be caused by the uptake of electron-transfer-blocking hydrogen by bacteria. Because the overall trend of the degradation rates is negative we conclude that the inhibitive effect of carbonate precipitation and hydrogen formation cannot be compensated for by the positive influence of the activity of sulphate-reducing bacteria.  相似文献   
890.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号