Overtides and compound tides are generated by nonlinear mechanisms operative primarily in shallow waters. Their presence complicates
tidal analysis owing to the multitude of new constituents and their possible frequency overlap with astronomical tides. The
science of nonlinear tides was greatly advanced by the pioneering researches of Christian Le Provost who employed analytical
theory, physical modeling, and numerical modeling in many extensive studies, especially of the tides of the English Channel.
Le Provost’s complementary work with satellite altimetry motivates our attempts to merge these two interests. After a brief
review, we describe initial steps toward the assimilation of altimetry into models of nonlinear tides via generalized inverse
methods. A series of barotropic inverse solutions is computed for the M tide over the northwest European Shelf. Future applications of altimetry to regions with fewer in situ measurements will
require improved understanding of error covariance models because these control the tradeoffs between fitting hydrodynamics
and data, a delicate issue in coastal regions. While M can now be robustly determined along the Topex/Poseidon satellite ground tracks, many other compound tides face serious aliasing
problems.
In memory of Christian Le Provost 相似文献
The thermal structure of Archean and Proterozoic lithospheric terranes in southern Africa during the Mesozoic was evaluated by thermobarometry of mantle peridotite xenoliths erupted in alkaline magmas between 180 and 60 Ma. For cratonic xenoliths, the presence of a 150–200 °C isobaric temperature range at 5–6 GPa confirms original interpretations of a conductive geotherm, which is perturbed at depth, and therefore does not record steady state lithospheric mantle structure.
Xenoliths from both Archean and Proterozoic terranes record conductive limb temperatures characteristic of a “cratonic” geotherm (40 mW m−2), indicating cooling of Proterozoic mantle following the last major tectonothermal event in the region at 1 Ga and the probability of thick off-craton lithosphere capable of hosting diamond. This inference is supported by U–Pb thermochronology of lower crustal xenoliths [Schmitz and Bowring, 2003. Contrib. Mineral. Petrol. 144, 592–618].
The entire region then suffered a protracted regional heating event in the Mesozoic, affecting both mantle and lower crust. In the mantle, the event is recorded at 150 Ma to the southeast of the craton, propagating to the west by 108–74 Ma, the craton interior by 85–90 Ma and the far southwest and northwest by 65–70 Ma. The heating penetrated to shallower levels in the off-craton areas than on the craton, and is more apparent on the southern margin of the craton than in its western interior. The focus and spatial progression mimic inferred patterns of plume activity and supercontinent breakup 30–100 Ma earlier and are probably connected.
Contrasting thermal profiles from Archean and Proterozoic mantle result from penetration to shallower levels of the Proterozoic lithosphere by heat transporting magmas. Extent of penetration is related not to original lithospheric thickness, but to its more fertile character and the presence of structurally weak zones of old tectonism. The present day distribution of surface heat flow in southern Africa is related to this dynamic event and is not a direct reflection of the pre-existing lithospheric architecture. 相似文献
The Chesapeake Bay is greatly impacted by numerous pollutants including heavy metals and understanding the controls on the
distribution of heavy metals in the watershed is critical to mitigation and remediation efforts in controlling this type of
pollution. Clasts from a stormwater catchment basin draining a subdivision near George Mason University, Fairfax VA (38°50.090°N
78°19.204°W) were investigated using X-ray diffraction (XRD), Scanning electron microcopy (SEM) and energy dispersive spectroscopy
(EDS) to determine the nature of Mn-oxide coatings and relationship to bound heavy metals. Mn-oxides are poorly crystalline
and occur as subhedral to anhedral platy particles and more rarely as euhedral plates. Micronodules are a commonly observed
texture. Chemical compositions of coatings are variable with average major constituent concentrations being Mn (33.38 wt%),
Fe (11.88 wt%), Si (7.33 wt%), Al (5.03 wt%), and Ba (0.90 wt%). Heavy metals are found in the coatings with Zn being most
prevalent, occurring in approximately 58% of analyses with an average concentration of (0.66 wt%). Minor amounts of Co, Ni,
Pb, and Cl are observed. Heavy metals and Cl are interpreted as being derived from road pollution. Mn-oxides can serve as
a sequestration mechanism for pollution but may also release heavy metals. Field and laboratory observations indicate Mn-oxides
occurring on the surface of the clasts can be mechanically mobilized. This is a mechanism for transporting heavy metals into
the Chesapeake Bay watershed. Deicing agents may serve as a mechanism to release heavy metals through cation exchange and
increased ionic strength. This is the first detailed mineralogical investigation of Mn-oxides and the roles they may play
in pollution in the Chesapeake Bay. 相似文献
A most fundamental and far-reaching trait of geographic information is the distinction between extensive and intensive properties. In common understanding, originating in Physics and Chemistry, extensive properties increase with the size of their supporting objects, while intensive properties are independent of this size. It has long been recognized that the decision whether analytical and cartographic measures can be meaningfully applied depends on whether an attribute is considered intensive or extensive. For example, the choice of a map type as well as the application of basic geocomputational operations, such as spatial intersections, aggregations or algebraic operations such as sums and weighted averages, strongly depend on this semantic distinction. So far, however, the distinction can only be drawn in the head of an analyst. We still lack practical ways of automation for composing GIS workflows and to scale up mapping and geocomputation over many data sources, e.g. in statistical portals. In this article, we test a machine-learning model that is capable of labeling extensive/intensive region attributes with high accuracy based on simple characteristics extractable from geodata files. Furthermore, we propose an ontology pattern that captures central applicability constraints for automating data conversion and mapping using Semantic Web technology. 相似文献
Multiple indicators of sublethal stress (bioindicators) were used to assess the health and condition of two important estuarine fish species in the Pamlico Sound estuary following extensive flooding from three sequential hurricanes that occurred during early fall 1999. Bioindicators ranging from the biochemical to the reproductive and organism-level were used to assess the health of southern flounder and spot in Pamlico Sound compared to the health of these same species sampled from a relatively unaffected references site in lower Core Sound. Many of the physiological, reproductive, immunological, histopathological, and general condition indices suggested that both species, and particularly spot, in Pamlico Sound were sublethally stressed and in poorer condition than fish sampled from Core Sound. The major environmental stressors causing these sublethal stress responses in Pamlico Sound fish appears to be those related to episodic hypoxic exposure or a combination of effects associated with hypoxic conditions such as alterations in preferred habitat and food availability. Although fish populations in Pamlico Sound do not appear to be severely damaged or impaired at this time, organisms that are sublethally stressed can incur increased vulnerability to additional or future stressors such as modified physicochemical regimes, changes in food and habitat availability, and increases in infectious pathogens. Because of the low flushing rate (~1 yr) of Pamlico Sound, recovery rate may be exceptionally slow, prolonging any adverse effects of altered nutrient regimes (such as hypoxia) on the health and fitness of resident fish populations. Flooding from the 1999 hurricanes may have contributed to the short-term health and condition of finfish species in Pamlico Sound and also influenced longer-term recovery and ecological status of this system. Longer-term manifestation of effects from flooding may be of particular concern as the frequency of hurricanes is expected to increase over the next few years and the accelerated uses of the coastal zone places further stress on estuarine resources. 相似文献
Seagrasses are indicators of ecosystem state because they are sensitive to variations in water composition and clarity resulting from watershed-level impacts. A simulation model designed to studyZostera marina (eelgrass) habitat dynamics in a variable littoral zone environment was used to address the potential ecological responses to eutrophication in lower Chesapeake Bay. The adjacent channel boundary environment is a source of dissolved and particulate materials to the littoral zone. In the simulations, concentrations of key water quality variables in the adjacent estuarine channel boundary were either halved or doubled relative to the base case to investigate light versus nitrogen effects. The role of the seagrass meadow in littoral zone carbon and nitrogen dynamics was evaluated when meadow size was changed in the model. Particulate and dissolved organic carbon accounted for 83% of the submarine light attenuation in the seagrass meadow. In all model runs, the water column concentrations of chlorophylla and dissolved inorganic nitrogen (DIN) were below the habitat criteria proposed as critical to seagrass survival. Eelgrass community production was carefully regulated by the interactive effects of light, nitrogen, and grazing on epiphyte growth. Increased eelgrass coverage in the littoral zone led to a simulated doubling of ecosystem primary production but reduced the fraction of production by planktonic and sediment microalgae. The simulation model presented here demonstrated the importance of material input from the channel in littoral zone biogeochemical dynamics. Submarine ligh regulated primary production more strongly than inorganic nitrogen concentrations in the model. External DIN concentrations influenced seagrass survival indirectly: enrichment stimulated growth of epiphytes and phytoplankton and promoted shading of the seagras leaf. The model was based upon a unimpacted ecosystem and deteriorated water quality negatively influenced primary production greater than the increases triggered by improved condition. Increased material loading to the littoral zone reduced submarine light availability, increased phytoplankton production, lowered ecosystem production, and reduced subtidal vegetated habitat. This simulation model of the estuarine littoral zone model combines hydrodynamics, biogeochemical sources and sinks, and living resources in order to better understand structure, function, and change in aquatic ecosystems. 相似文献
Characteristics of the winter boundary layer over the (elevation 1600 m) in the vicinity of Johannesburg, 26 ° S, 29 ° E, are described in relation to air pollution potential by means of doppler sounder observations and background climatological data. Regional mean winds for the 800 h Pa level show that the winter boundary layer is dominated by a cell of high pressure over the Limpopo River Valley to the northeast of Johannesburg. To the south of Johannesburg, westerly circumpolar flow is prevalent and encroaches onto the plateau during the passage of frontal perturbations. Doppler sounder wind and turbulence profiles, averaged for the months of August 1984 and June 1985, are presented to establish a boundary-layer climatology. Diurnally averaged doppler sounder profiles for both months revealed a very consistent convective/day — stable/night cycle in the very dry winter conditions. A sharp radiation inversion formed just after sunset up to the 150–200 m level and grew in depth to reach 300 m on average near sunrise. The inversion caused a reduction in frictional drag and the formation of nocturnal low level jet during westerly encroachment. A case study is evaluated to determine the detailed structure of the low level jet near Johannesburg. The thermal wind plays a role in the nocturnal acceleration; mechanisms for its development and maintenance are explored. Additional work is presented on the synoptic cycle and its influence on air pollution dispersion over the African Plateau. 相似文献