首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   2篇
  国内免费   1篇
大气科学   1篇
地球物理   19篇
地质学   52篇
海洋学   5篇
天文学   4篇
自然地理   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   8篇
  2013年   3篇
  2012年   1篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1989年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
31.
We determined the melting phase relations, melt compositions, and melting reactions of carbonated peridotite on two carbonate-bearing peridotite compositions (ACP: alkali-rich peridotite + 5.0 wt % CO2 and PERC: fertile peridotite + 2.5 wt % CO2) at 10–20 GPa and 1,500–2,100 °C and constrain isopleths of the CO2 contents in the silicate melts in the deep mantle. At 10–20 GPa, near-solidus (ACP: 1,400–1,630 °C) carbonatitic melts with < 10 wt % SiO2 and > 40 wt % CO2 gradually change to carbonated silicate melts with > 25 wt % SiO2 and < 25 wt % CO2 between 1,480 and 1,670 °C in the presence of residual majorite garnet, olivine/wadsleyite, and clinoenstatite/clinopyroxene. With increasing degrees of melting, the melt composition changes to an alkali- and CO2-rich silicate melt (Mg# = 83.7–91.6; ~ 26–36 wt % MgO; ~ 24–43 wt % SiO2; ~ 4–13 wt % CaO; ~ 0.6–3.1 wt % Na2O; and ~ 0.5–3.2 wt % K2O; ~ 6.4–38.4 wt % CO2). The temperature of the first appearance of CO2-rich silicate melt at 10–20 GPa is ~ 440–470 °C lower than the solidus of volatile-free peridotite. Garnet + wadsleyite + clinoenstatite + carbonatitic melt controls initial carbonated silicate melting at a pressure < 15 GPa, whereas garnet + wadsleyite/ringwoodite + carbonatitic melt dominates at pressure > 15 GPa. Similar to hydrous peridotite, majorite garnet is a liquidus phase in carbonated peridotites (ACP and PERC) at 10–20 GPa. The liquidus is likely to be at ~ 2,050 °C or higher at pressures of the present study, which gives a melting interval of more than 670 °C in carbonated peridotite systems. Alkali-rich carbonated silicate melts may thus be produced through partial melting of carbonated peridotite to 20 GPa at near mantle adiabat or even at plume temperature. These alkali- and CO2-rich silicate melts can percolate upward and may react with volatile-rich materials accumulate at the top of transition zone near 410-km depth. If these refertilized domains migrate upward and convect out of the zone of metal saturation, CO2 and H2O flux melting can take place and kimberlite parental magmas can be generated. These mechanisms might be important for mantle dynamics and are potentially effective metasomatic processes in the deep mantle.  相似文献   
32.
We have determined the density evolution of the sound velocity of dhcp-FeHx (x  1) up to 70 GPa at room temperature, by inelastic X-ray scattering and by X-ray diffraction. We find that the variation of VP with density is different for the ferromagnetic and nonmagnetic dhcp-FeHx, and that only nonmagnetic dhcp-FeHx follows Birch's law. Combining our results with Birch's law for iron and assuming an ideal two-component mixing model, we obtain an upper bound of the hydrogen content in the Earth's inner core, 0.23(6) wt.% H, corresponding to FeH0.13(3). The iron alloy with 0.23(6) wt.% H can satisfy the density, and compressional and shear sound velocities of the PREM inner core, assuming that there are no other light elements in the inner core.  相似文献   
33.
Mineral physics data related to the deep dehydration of stagnant slabs are summarized. The hydrogen diffusion in minerals of the mantle transition zone is not fast enough to homogenize the transition zone on the geological time scale, and hydrogen is expected to be unevenly distributed there. The hydrous fluid formed in the transition zone tends to percolate into shallower depths to form gravitationally stable hydrous magmas at the base of the upper mantle. We need further studies on the relation of intraplate volcanism above the stagnant slab and deep dehydration, because we expect the geochemical fingerprints of deep dehydration to be quite different from those of shallow dehydration from the subducting slabs.  相似文献   
34.
Single crystalline San Carlos olivine (1 mm cube) was transformed to (Mg,Fe)2SiO4β-phase at 13.5–15 GPa, 1030–1330 °C for 0–600 min using a multi-anvil high pressure apparatus. The α-β transformation occurred by incoherent surface nucleation and interface-controlled growth and recovered partially transformed samples showed sharply defined reaction rim. The growth rate of the β-phase rim significantly decreased with time and the growth eventually ceased. TEM observations revealed that many dislocations were created in both the relict olivine just near the α-β interface and the β-phase in the rim, which show evidence for deformation caused by interfacial stresses associated with the misfit elastic strain of the transformation. The observed tangled dislocation texture in β-phase suggested that the β-phase rim was hardened and relaxation of the interfacial stress was retarded. This probably caused a localized pressure drop in the relict olivine and decreased the growth rate. Time-dependent growth rates of β-phase is possibly controlled by the rheology of β-phase, which must be considered for the prediction of the olivine metastability in the subducting slabs. Received: 24 January 1997 / Revised, accepted: 24 July 1998  相似文献   
35.
Mg–Fe interdiffusion rates have been measured in wadsleyite aggregates at 16.0–17.0 GPa and 1230–1530 °C by the diffusion couple method. Oxygen fugacity was controlled using the NNO buffer, and water contents of wadsleyite were measured by infrared spectroscopy. Measured asymmetric diffusion profiles, analyzed using the Boltzmann–Matano equation, indicate that the diffusion rate increases with increasing iron concentration and decreasing grain size. In the case of wadsleyite containing 50–90 weight ppm H2O, the Mg–Fe interdiffusion coefficients at compositions of Mg/(Mg + Fe)=0.95 in the coarse-grained region (about 60 m) and 0.90 in the fine-grained region (about 6 m) were determined to be a DXmg = 0.95 (m2 s–1)=1.24 × 10–9 exp[–172 (kJ mol–1)/RT] and DXmg = 0.90 (m2 s–1)=1.77 × 10–9 exp[–143 (kJ mol–1)/RT], respectively. Grain-boundary diffusion rates were estimated to be about 4 orders of magnitude faster than the volume diffusion rate. Grain-boundary diffusion dominates when the grain size is less than a few tens of microns. Results for the nominally dry diffusion couple in the present study are roughly consistent with previous studies, taking into account differences in pressure and grain size, although water contents of samples were not clear in previous studies. We observed that the diffusivity is enhanced by about 1 order of magnitude in wadsleyite containing 300–2100 wt. ppm H2O at 1230 °C, which is almost identical to the enhancement associated with a 300 °C increase in temperature. It is still not conclusive that a jump in diffusivity exists between olivine and wadsleyite because water contents of olivine in previous diffusion studies and effects of water on the olivine diffusivity are uncertain.  相似文献   
36.
A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch–Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus (K 0,T0), 206 ± 4 GPa; its pressure derivative K0,T , 4.4 ± 0.8; (?K 0,T /?T) = ?0.037 ± 0.006 GPa K?1; a = 2.98 ± 0.14 × 10?5 K?1 and b = 0.47 ± 0.28 × 10?8 K?2, where α 0,T  = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0,T0 was determined to be 2.95 × 10?5 K?1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137–148, 1946) widely used in many physical and geological databases. Fitting the Mie–Grüneisen–Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0,T0 = 205 ± 3 GPa, K0,T  = 4.0, Grüneisen parameter (γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with \({\text{d}}P/{\text{d}}T = - 0.014\) GPa/K) was found to be consistent with experimental data.  相似文献   
37.
Ryo Nakamura  Eiji Ohtani 《Icarus》2011,211(1):648-654
We have determined the phase relation of the MgSO4-H2O binary system using an externally heated diamond anvil cell in the compositional range of 0-30 wt.% MgSO4, and under temperature and pressure conditions from 298 to 500 K and up to 4.5 GPa. Using our experimental results, we were able to estimate the composition of the ice mantle of the large icy satellites of Jupiter, such as Ganymede.In our experiments, we identified the following phases in the MgSO4-H2O system up to 4 GPa at 298 K: Ices VI and VII, magnesium heptahydrate, MgSO4·7H2O, and a liquid phase. The present phase relations suggest that there may be a deep internal ocean down to a depth about 800 km in the interior of Ganymede.  相似文献   
38.
Large-scale landslides along the Kubusu and Besso rivers in Toyama Prefecture are developed in the Miocene Iwaine Formation, which is composed of andesitic lava, tuff, and tuff breccia. In the middle member of this formation, the tuff is easily altered to montmorillonite-bearing rock, and subsequently plays an important role in the development of landslides events, which tend to be large-scale events, as the massive lava of the upper member forms a cap rock over the tuff. The Kiritani and Koinami basins, which are flat intermontane basins located along the Kubusu and Besso rivers, respectively, are interpreted as landslide-dammed lakes, later filled with sediment. Accelerator mass spectrometry 14C ages show that the landslides forming each dam occurred simultaneously, at approximately 2500 BP. These ages were measured from wood fragments embedded in the landslide material of Kiritani, and from an in situ stump drowned during the impoundment of Koinami. If the trigger of these landslides was an earthquake, it is most likely to have been the penultimate event along the Atotsugawa fault zone.  相似文献   
39.
40.
The compositional dependence on the density of liquid Fe alloys under high pressure is important for estimating the amount of light elements in the Earth’s outer core. Here, we report on the density of liquid Fe–Si at 4 GPa and 1,923 K measured using the sink–float method and our investigation on the effect of the Si content on the density of the liquid. Our experiments show that the density of liquid Fe–Si decreases from 7.43 to 2.71 g/cm3 non-linearly with increasing Si content (0–100 at%). The molar volume of liquid Fe–Si calculated from the measured density gradually decreases in the compositional range 0–50 at% Si, and increases in the range 50–100 at% Si. It should be noted that the estimated molar volume of the alloys shows a negative volume of mixing between Fe and Si. This behaviour is similar to Fe–S liquid (Nishida et al. in Phys Chem Miner 35:417–423, 2008). However, the excess molar volume of mixing for the liquid Fe–Si is smaller than that of liquid Fe–S. The light element contents in the outer core estimated previously may be an underestimation if we take into account the possible negative value of the excess mixing volume of iron–light element alloys in the outer core.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号