首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   2篇
  国内免费   1篇
大气科学   1篇
地球物理   19篇
地质学   52篇
海洋学   5篇
天文学   4篇
自然地理   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   8篇
  2013年   3篇
  2012年   1篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1989年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
11.
In this article, we review the significant recent results of geophysical studies and discuss their implications on seismotectonics, magmatism, and mantle dynamics in East Asia. High-resolution geophysical imaging revealed structural heterogeneities in the source areas of large crustal earthquakes, which may reflect magma and fluids that affected the rupture nucleation of large earthquakes. In subduction zone regions, the crustal fluids originate from the dehydration of the subducting slab. Magmatism in arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab. The intraplate magmatism has different origins. The continental volcanoes in Northeast Asia (such as Changbai and Wudalianchi) seem to be caused by the corner flow in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and the deep dehydration of the stagnant slab as well. The Tengchong volcano in Southwest China is possibly caused by a similar process in BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China seems to be a hotspot fed by a lower-mantle plume associated with the Pacific and Philippine Sea slabs’ deep subduction in the east and the Indian slab’s deep subduction in the west down to the lower mantle. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and cause the slab–plume interactions. Some of these issues, such as the origin of intraplate magmatism, are still controversial, and so further detailed studies are needed from now.  相似文献   
12.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   
13.
We conducted high-pressure phase equilibrium experiments in the systems MgSiO3 with 15 wt% H2O and Mg2SiO4 with 5 wt% and 11 wt% H2O at 20 ∼ 27 GPa. Based on the phase relations in these systems, together with the previous works on the related systems, we have clarified the stability relations of dense hydrous magnesium silicates in the system MgO-SiO2-H2O in the pressure range from 10 to 27 GPa. The results show that the stability field of phase G, which is identical to phase D and phase F, expands with increasing water contents. Water stored in serpentine in the descending cold slabs is transported into depths greater than 200 km, where serpentine decomposes to a mixture of phase A, enstatite, and fluid. Reaction sequences of the hydrous phases which appear at higher pressures vary with water content. In the slabs with a water content less than about 2 wt%, phase A carries water to a depth of 450 km. Hydrous wadsleyite, hydrous ringwoodite, and ilmenite are the main water reservoirs in the transition zone from 450 to 660 km. Superhydrous phase B is the water reservoir in the uppermost part of the lower mantle from 670 to 800 km, whereas phase G appears in the lower mantle only at depths greater than 800 km. In cold slabs with local water enrichment greater than 2 wt%, the following hydrous phases appear with increasing depths; phase A to 450 km, phase A and phase G from 450 km to 550 km, brucite, superhydrous phase B, and phase G from 550 km to 800 km, and phase G at depths greater than 800 km. Received: 4 August 1999 / Accepted: 1 March 2000  相似文献   
14.
A method of in situ X-ray diffraction at Spring-8 (Japan) was used to analyze simultaneously the hydrogen incorporation into Fe and Fe3C, as well as to measure the relative stability of carbides, nitrides, sulfides, and hydrides of iron at pressures of 6–20 GPa and temperatures up to 1600 K. The following stability sequence of individual iron compounds was established in the studied pressure and temperature interval: FeS > FeN > FeC > FeH > Fe. A change in the unit-cell volume as compared to the known equations of state was used to estimate the hydrogen contents in carbide Fe3C and hydride FeHx. Data on hydride correspond to stoichiometry with x ≈ 1. Unlike iron sulfides and silicides, the solubility of hydrogen in Fe3C seemed to be negligibly low—within measurement error. Extrapolating obtained data to pressures of the Earth’s core indicates that carbon and hydrogen are mutually incpompatible in the iron–nickel core, while nitrogen easily substitutes carbon and may be an important component of the inner core in the light of the recent models assuming the predominance of iron carbide in its composition.  相似文献   
15.
The Alaskan Stream is the westward boundary current of the North Pacific subarctic gyre. In the central region of the North Pacific, the Alaskan Stream serves as a connection between the Alaskan gyre, Western subarctic gyre and Bering Sea gyre. Its volume transport is very important in estimating the magnitude of the subarctic circulation in the North Pacific. In order to clarify its seasonal and interannual variation, we conducted observations along a north-south section at 180° during June from 1990 to 1997. Moorings were deployed from 1995 to 1997. Hydrographic casts were made at intervals of 37 km to a depth of 3000 m. Moorings were set between CTD stations, with Moor1 (Moor2) at the center (southern edge) of the Alaskan Stream. Geostrophic volume transport (referred to 3000 m) revealed large interannual variability in the Alaskan Stream. Average volume transport over the 8 years was 27.5 × 106 m3s-1 with a standard deviation of 6.5 × 106 m3s-1. Maximum transport was 41.0 × 106 m3s-1 (1997) and minimum was 21.7 × 106 m3s-1 (1995). Stable westward flows were observed at Moor1 1500 m (259°, 11.7 cm s-1) and 3000 m (240°, 3.7 cm s-1, 1996–1997 year average). The ratio of eddy to mean kinetic energy (KE/ ) was very small (<0.6) throughout the year. A relatively weak and unstable westward flow was observed at Moor2 at 3000 m depth. Conversely, the average flow direction at Moor2 5000 m was eastward.  相似文献   
16.
Northern and southern latitudinal transects were conducted west of Tsugaru Strait to estimate the volume transport in this area. It was found that the Tsushima Warm Current is the northward volume transport across the southern transect and the Northward Current is the northward volume transport across the northern transect. The current in Tsugaru Strait,viz. the Tsugaru Warm Current, is the flow remaining when the Northward Current is subtracted from the Tsushima Warm Current. Both CTD transects covered from near-shore to west of the subarctic front, and observed depths were from the surface to the bottom or to 1000-1500 m depth. Our estimations indicate that large interannual variations of volume transport occur, relative to the seasonal ones, with interannual variations sometimes exceeding seasonal variations in the Tsushima Warm Current and the Northward Current. The Tsugaru Warm Current has near-steady transport. Fluctuations in the Tsushima Warm Current are thus transmitted to the Northward Current. Further, our results revealed seasonal variations in the flow: the baloclinic structure became deeper in April and the current axis tended to shift in a near-shore direction in October. Therefore, previous studies, which had shallow reference levels and lacked nearshore stations, may have underestimated the transport and excessive seasonal variations.  相似文献   
17.
Abstract— The high‐pressure polymorphs of olivine, pyroxene, and plagioclase in or adjacent to shock melt veins (SMVs) in two L6 chondrites (Sahara 98222 and Yamato 74445) were investigated to clarify the related transformation mechanisms and to estimate the pressure‐temperature conditions of the shock events. Wadsleyite and jadeite were identified in Sahara 98222. Wadsleyite, ringwoodite, majorite, akimotoite, jadeite, and lingunite (NaAlSi3O8‐hollandite) were identified in Yamato 74445. Wadsleyite nucleated along the grain boundaries and fractures of original olivine. The nucleation and growth of ringwoodite occurred along the grain boundaries of original olivine, and as intracrystalline ringwoodite lamellae within original olivine. The nucleation and growth of majorite took place along the grain boundaries or fractures in original enstatite. Jadeite‐containing assemblages have complicated textures containing “particle‐like,” “stringer‐like,” and “polycrystalline‐like” phases. Coexistence of lingunite and jadeite‐containing assemblages shows a vein‐like texture. We discuss these transformation mechanisms based on our textural observations and chemical composition analyses. The shock pressure and temperature conditions in the SMVs of these meteorites were also estimated based on the mineral assemblages in the SMVs and in comparison with static high‐pressure experimental results as follows: 13–16 GPa, >1900 °C for Sahara 98222 and 17–24 GPa, >2100 °C for Yamato 74445.  相似文献   
18.
The melting temperature of Fe–18 wt% Si alloy was determined up to 119 GPa based on a change of laser heating efficiency and the texture of the recovered samples in the laser-heated diamond anvil cell experiments. We have also investigated the subsolidus phase relations of Fe–18 wt% Si alloy by the in-situ X-ray diffraction method and confirmed that the bcc phase is stable at least up to 57 GPa and high temperature. The melting curve of the alloy was fitted by the Simon’s equation, P(GPa)/a = (T m(K)/T 0) c , with parameters, T 0 = 1,473 K, a = 3.5 ± 1.1 GPa, and c = 4.5 ± 0.4. The melting temperature of bcc Fe–18 wt% Si alloy is comparable with that of pure iron in the pressure range of this work. The melting temperature of Fe–18 wt% Si alloy is estimated to be 3,300–3,500 K at 135 GPa, and 4,000–4,200 K at around 330 GPa, which may provide the lower bound of the temperatures at the core–mantle boundary and the inner core–outer core boundary if the light element in the core is silicon.  相似文献   
19.
The melting curve of perovskite MgSiO3 and the liquidus and solidus curves of the lower mantle were estimated from thermodynamic data and the results of experiments on phase changes and melting in silicates.The initial slope of the melting curve of perovskite MgSiO3 was obtained as dTm/dP?77 KGPa?1 at 23 GPa. The melting curve of perovskite was expressed by the Kraut-Kennedy equation as Tm(K)=917(1+29.6ΔVV0), where Tm?2900 K and P?23 GPa; and by the Simon equation, P(GPa)?23=21.2[(Tm(K)2900)1.75?1].The liquidus curve of the lower mantle was estimated as Tliq ? 0.9 Tm (perovskite) and this gives the liquidus temperature Tliq=7000 ±500 K at the mantle-core boundary. The solidus curve of the lower mantle was also estimated by extrapolating the solidus curve of dry peridotite using the slope of the solidus curve of magnesiowüstite at high pressures. The solidus temperature is ~ 5000 K at the base of the lower mantle. If the temperature distribution of the mantle was 1.5 times higher than that given by the present geotherm in the early stage of the Earth's history, partial melting would have proceeded into the deep interior of the lower mantle.Estimation of the density of melts in the MgOFeOSiO2 system for lower mantle conditions indicates that the initial melt formed by partial fusion of the lower mantle would be denser than the residual solid because of high concentration of iron into the melt. Thus, the melt generated in the lower mantle would tend to move downward toward the mantle-core boundary. This downward transportation of the melt in the lower mantle might have affected the chemistry of the lower mantle, such as in the D″ layer, and the distribution of the radioactive elements between mantle and core.  相似文献   
20.
The space group and hydrogen positions of -(Al0.84Mg0.07Si0.09)OOH are investigated using a single crystal synthesized using a multi-anvil apparatus under conditions of 1000 °C and 21 GPa. The space group determined by single-crystal X-ray diffraction is to Pnn2, with unit-cell parameters of a=4.6975(8) Å, b= 4.2060(6) Å, c=2.8327(4) Å, and V=55.97(1) Å3. Partial occupancy of the Al site by Mg and Si suggests the possibility of a limited solid solution between -AlOOH, stishovite, and a hypothetical CaCl2-type Mg(OH)2 that is 16% denser than brucite. Difference-Fourier maps reveal two small but significant Fourier peaks attributable to hydrogen atoms. Atomic distances and angles around the first peak indicate a hydrogen bond with O···O distances of 2.511 Å, while those around the second peak are suggestive of a bifurcated hydrogen bond with O···O distances of 2.743 and 2.743 Å.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号