首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34653篇
  免费   139篇
  国内免费   136篇
测绘学   940篇
大气科学   2378篇
地球物理   5778篇
地质学   15898篇
海洋学   2600篇
天文学   6044篇
综合类   200篇
自然地理   1090篇
  2022年   144篇
  2021年   204篇
  2020年   191篇
  2019年   228篇
  2018年   3534篇
  2017年   3249篇
  2016年   2083篇
  2015年   313篇
  2014年   445篇
  2013年   609篇
  2012年   1565篇
  2011年   3293篇
  2010年   3065篇
  2009年   3238篇
  2008年   2584篇
  2007年   3249篇
  2006年   539篇
  2005年   793篇
  2004年   689篇
  2003年   748篇
  2002年   547篇
  2001年   275篇
  2000年   292篇
  1999年   170篇
  1998年   184篇
  1997年   171篇
  1996年   115篇
  1995年   131篇
  1994年   115篇
  1993年   98篇
  1992年   71篇
  1991年   98篇
  1990年   97篇
  1989年   68篇
  1988年   79篇
  1987年   99篇
  1986年   80篇
  1985年   108篇
  1984年   95篇
  1983年   104篇
  1982年   87篇
  1981年   95篇
  1980年   118篇
  1979年   88篇
  1978年   87篇
  1977年   77篇
  1976年   63篇
  1975年   63篇
  1974年   71篇
  1973年   64篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
861.
The statistical study of intense mesoscale cyclones formed in the Black Sea region in 1979-2013 is carried out using the surface wind data of the RegCM climate model. Such cyclone parameters as intensity, lifetime, area, height, and trajectories over the sea as well as the place and time of origin are considered. The distribution of mesocyclones by months and times of day is considered. The obtained results are compared with the results of a statistical study on the Black Sea mesocyclones based on the PRECIS climate model. Possible causes for differences in data on the intensity and number of mesocyclones simulated by RegCM and PRECIS models are considered.  相似文献   
862.
The results are presented of using a new approach that helps to detect and compute the parameters of eddies in the ocean and tropical cyclones in the atmosphere based on satellite imagery. The approach is based on the concept of dominant orientation of thermal contrasts (DOTC). DOTC is an angle of the statistically significant orientation of brightness contrast in the specified vicinity of the image. DOTC highly correlates with the directions of flows; it is a base for construction of models for identification of eddy motions, namely, synoptic eddies in the oceans and tropical cyclones in the atmosphere. The model-based identification of one or another eddy allows estimating such parameters as the center position, shape, size, and sign (cyclone or anticyclone) of the eddy, and the size of the tropical cyclone eye. Based on the proposed approach, technologies of automatic identification and monitoring of oceanic eddies and tropical cyclones are developed. The results of the practical use of these technologies are presented for the recent years.  相似文献   
863.
Urgent current problems, namely, the climate change and its effects on river runoffare considered. The regional climate change at different altitudes and in separate regions of Azerbaijan is studied using long-term data of hydrometeorological observations. The trend towards the decrease in annual river runoff and peak flood discharge as well as towards the increase in winter (low-water) runoff is observed due to the influence of regional climate change.  相似文献   
864.
The variations in average annual surface air temperature, precipitation, and runoff in the Selenga River basin (within Russia) are analyzed. It is demonstrated that the considerable increase in average annual temperature of surface air layers occurred in the 1980s-1990s. The decrease in peak water discharge in the rivers and the increase in the frequency of low-water periods were revealed in the forest-steppe and steppe zones of the Selenga River basin in 2001-2010. In the southwestern mountain regions (the Dzhida River basin) the river runoff increased during that period.  相似文献   
865.
We report new experimental data on the composition of magmatic amphiboles synthesised from a variety of granite (sensu lato) bulk compositions at near-solidus temperatures and pressures of 0.8–10 kbar. The total aluminium content (Altot) of the synthetic calcic amphiboles varies systematically with pressure (P), although the relationship is nonlinear at low pressures (<2.5 kbar). At higher pressures, the relationship resembles that of other experimental studies, which suggests of a general relationship between Altot and P that is relatively insensitive to bulk composition. We have developed a new Al-in-hornblende geobarometer that is applicable to granitic rocks with the low-variance mineral assemblage: amphibole + plagioclase (An15–80) + biotite + quartz + alkali feldspar + ilmenite/titanite + magnetite + apatite. Amphibole analyses should be taken from the rims of grains, in contact with plagioclase and in apparent textural equilibrium with the rest of the mineral assemblage at temperatures close to the haplogranite solidus (725 ± 75 °C), as determined from amphibole–plagioclase thermometry. Mean amphibole rim compositions that meet these criteria can then be used to calculate P (in kbar) from Altot (in atoms per formula unit, apfu) according to the expression:
$${\textit{P }}\left( {\text{kbar}} \right) = 0.5 + 0.331\left( 8 \right) \times {\text{Al}}^{\text{tot}} + 0.995\left( 4 \right) \times \left( {{\text{Al}}^{\text{tot}} } \right)^{2}$$
This expression recovers equilibration pressures of our calibrant dataset, comprising both new and published experimental and natural data, to within ±16 % relative uncertainty. An uncertainty of 10 % relative for a typical Altot value of 1.5 apfu translates to an uncertainty in pressure estimate of 0.5 kbar, or 15 % relative. Thus the accuracy of the barometer expression is comparable to the precision with which near-solidus amphibole rim composition can be characterised.
  相似文献   
866.
In this paper, Kalpana-1 derived INSAT Multispectral Rainfall Algorithm (IMSRA) rainfall estimates are compared with two multisatellite rainfall products namely, TRMM Multisatellite Precipitation Analysis (TMPA)-3B42 and Global Satellite Mapping of Precipitation (GSMaP), and India Meteorological Department (IMD) surface rain gauge (SRG)-based rainfall at meteorological sub-divisional scale over India. The performance of the summer monsoon rainfall of 2013 over Indian meteorological sub-divisions is assessed at different temporal scales. Comparison of daily accumulated rainfall over India from IMSRA shows a linear correlation of 0.72 with TMPA-3B42 and 0.70 with GSMaP estimates. IMSRA is capable to pick up daily rainfall variability over the monsoon trough region as compared to TMPA-3B42 and GSMaP products, but underestimates moderate to heavy rainfall events. Satellite-derived rainfall maps at meteorological sub-divisional scales are in reasonably good agreement with IMD-SRG based rainfall maps with some exceptions. However, IMSRA performs better than GSMaP product at meteorological sub-divisional scale and comparable with TMPA data. All the satellite-derived rainfall products underestimate orographic rainfall along the west coast, the Himalayan foothills and over the northeast India and overestimate rainfall over the southeast peninsular India. Overall results suggest that IMSRA estimates have potential for monsoon rainfall monitoring over the Indian meteorological sub-divisions and can be used for various hydro-meteorological applications.  相似文献   
867.
An empirical model is developed and used with remotely sensed predictors: sea surface temperature (SST) and chlorophyll-a concentration (Chl-a), to compute surface water partial pressure of carbon dioxide (pCO2w) and air-sea fluxes of CO2 in the Hooghly estuary and its adjacent coastal oceans. In situ observations used here were based on measurements carried out in this region during winter and summer periods in 2008. The estimated pCO2w compares well with the in situ observations at root mean square error ±18 μatm. In winter, estimated pCO2w ranges between 320 and 500 μatm with large values (>400 μatm) on the south-western and south-eastern flanks of the coastal domain and lower values (340–375 μatm) on the main-channel. In summer, it remained spatially uniform at 450 μatm. Extrapolation of the results over the study region based on the Moderate Imaging Specroradiometer (MODIS) measured SST and Chl-a suggests that the region is a strong source of atmospheric CO2 during the summer with net release of 0.095 Tg C year?1 (equivalent to mean flux of 90 molC m?2 year?1) and is a weak source during the winter with net release of 0.006 Tg C yr?1 (0.5 molC m?2 year?1) from the geographical extent of 6000 Km2 area.  相似文献   
868.
Reliable and accurate estimates of tropical forest above ground biomass (AGB) are important to reduce uncertainties in carbon budgeting. In the present study we estimated AGB of central Indian deciduous forests of Madhya Pradesh (M.P.) state, India, using Advanced Land Observing Satellite – Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR) L-band data of year 2010 in conjunction with field based AGB estimates using empirical models. Digital numbers of gridded 1?×?1° dual polarization (HH & HV) PALSAR mosaics for the study area were converted to normalized radar cross section (sigma naught - σ0). A total of 415 sampling plots (0.1 ha) data collected over the study area during 2009–10 was used in the present study. Plot-level AGB estimates using volume equations representative to the study area were computed using field inventory data. The plot-level AGB estimates were empirically modeled with the PALSAR backscatter information in HH, HV and their ratios from different forest types of the study area. The HV backscatter information showed better relation with field based AGB estimates with a coefficient of determination (R2) of 0.509 which was used to estimate spatial AGB of the study area. Results suggested a total AGB of 367.4 Mt for forests of M.P. state. Further, validation of the model was carried out using observed vs. predicted AGB estimates, which suggested a root mean square error (RMSE) of ±19.32 t/ha. The model reported robust and defensible relation for observed vs. predicted AGB values of the study area.  相似文献   
869.
An open loop tracking architecture, which tracks GPS signals under weak and challenging conditions, is analyzed. The in-phase and quadrature-phase integration pair is regarded as a single tone complex signal. An FFT-based method is used as a frequency discriminator to estimate the Doppler frequency residual of the single tone signal. Another FFT-based method applies complex squaring to eliminate the effect of the navigation data bits polarities. The performance of the FFT-based discriminators is assessed in three criteria. Those criteria are the signal strength and dynamic range that can be tracked and the accuracy of the estimated Doppler frequency. In addition, the performance of the discriminators is analyzed to provide the theoretical and simulated peak detection probability. The results indicate that the FFT discriminator can track signals about 5 dB weaker than the signals that can be tracked by the complex squared FFT discriminator. In a quasi-static environment, the Doppler frequency residual can be assumed to be around zero, which can enable the FFT-based discriminators to track signals with approximately 2 dB less power. Moreover, the performance of the FFT-based discriminators is compared with the performance of two other frequency discriminators, namely the fast–slow and power-based. The comparison results indicate that these two frequency discriminators give higher frequency estimation accuracy, but they have a narrower dynamic range.  相似文献   
870.
This work presents the results of geological, geochemical, and Sm-Nd isotopic and geochemical studies of Late Riphean–Cambrian terrigenous rocks of the Khingan Group of the Lesser Khingan Terrane of the Central Asian Fold Belt, as well as the results of U-Pb geochronological (LA-ICP-MS) studies of detrital zircons from these deposits. These deposits are the most ancient in the structure of the terrain. It was found that the deposits of Iginchi and underlying Murandavi formations are attributed to the Late Riphean–Vendian age interval, and the Kimkan sequence, to the Late Cambrian–Early Ordovician. The periods of formation of the Murandavi and Iginchi formations, on one hand, and the Kimkan sequence, on the other hand, are separated by the stage of granitoid magmatism at the turn of the Vendian–Cambrian. Because of this, they cannot be attributed to a unified sedimentary sequence. It is the most probable that the sedimentation of the Iginchi and Murandavi formations and the Kimkan sequence occurred under subduction conditions against the backdrop of magmatic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号