排序方式: 共有42条查询结果,搜索用时 46 毫秒
11.
Inga Sevastjanova Benjamin Clements Robert Hall Elena A. Belousova William L. Griffin Norman Pearson 《Gondwana Research》2011,19(4):1024-1039
The Malay Peninsula lies on two continental blocks, Sibumasu and East Malaya, which are intruded by granitoids in two provinces: the Main Range and Eastern. Previous models propose that Permian–Triassic granitoids are subduction-related and syn-to post-collisional. We present 752 U–Pb analyses that were carried out on zircons from river sands in the Malay Peninsula; of these, 243 grains were selected for Hf-isotope analyses. Our data suggest a more complex Sibumasu–East Malaya collision history. 176Hf/177Hfi ratios reveal that Permian–Triassic zircons were sourced from three magmatic suites: (a) Permian crustally-derived granitoids, (b) Early-Middle Triassic granitoids with mixed mantle–crust sources, and (c) Late Triassic crustally-derived granitoids. This suggests three Permian–Triassic episodes of magmatism in the Malay Peninsula, two of which occurred in the Eastern Province. Although the exact timing of the Sibumasu–East Malaya collision remains unresolved, current data suggest that it occurred before the Late Triassic, probably in Late Permian–Early Triassic. Our data also indicate that Sibumasu and East Malaya basements are chronologically heterogeneous, but predominantly of Proterozoic age. Some basement may be Neoarchaean but there is no evidence for basement older than 2.8 Ga. Finally, we show that Hf-isotope signatures of Triassic zircons can be used as provenance indicators. 相似文献
12.
13.
J. Nordhaus E. G. Blackman A. Frank 《Monthly notices of the Royal Astronomical Society》2007,376(2):599-608
The origin, evolution and role of magnetic fields in the production and shaping of proto-planetary nebulae (PPNe) and planetary nebulae (PNe) are a subject of active research. Most PNe and PPNe are axisymmetric with many exhibiting highly collimated outflows; however, it is important to understand whether such structures can be generated by isolated stars or require the presence of a binary companion. Towards this end, we study a dynamical, large-scale α−Ω interface dynamo operating in a 3.0 M⊙ Asymptotic Giant Branch (AGB) star in both an isolated setting and a setting in which a low-mass companion is embedded inside the envelope. The back reaction of the fields on the shear is included and differential rotation and rotation deplete via turbulent dissipation and Poynting flux. For the isolated star, the shear must be resupplied in order to sufficiently sustain the dynamo. Furthermore, we investigate the energy requirements that convection must satisfy to accomplish this by analogy to the Sun. For the common envelope case, a robust dynamo results, unbinding the envelope under a range of conditions. Two qualitatively different types of explosion may arise: (i) magnetically induced, possibly resulting in collimated bipolar outflows and (ii) thermally induced from turbulent dissipation, possibly resulting in quasi-spherical outflows. A range of models is presented for a variety of companion masses. 相似文献
14.
A significant fraction of planetary nebulae (PNe) and protoplanetary nebulae (PPNe) exhibit aspherical, axisymmetric structures, many of which are highly collimated. The origin of these structures is not entirely understood, however, recent evidence suggests that many observed PNe harbour binary systems, which may play a role in their shaping. In an effort to understand how binaries may produce such asymmetries, we study the effect of low-mass (<0.3 M⊙ ) companions (planets, brown dwarfs and low-mass main-sequence stars) embedded into the envelope of a 3.0-M⊙ star during three epochs of its evolution [red giant branch, asymptotic giant branch (AGB), interpulse AGB]. We find that common envelope evolution can lead to three qualitatively different consequences: (i) direct ejection of envelope material resulting in a predominately equatorial outflow, (ii) spin-up of the envelope resulting in the possibility of powering an explosive dynamo-driven jet and (iii) tidal shredding of the companion into a disc which facilitates a disc-driven jet. We study how these features depend on the secondary's mass and discuss observational consequences. 相似文献
15.
Anna Nissen Eirik Keilegavlen Tor Harald Sandve Inga Berre Jan Martin Nordbotten 《Computational Geosciences》2018,22(2):451-467
In simulation of fluid injection in fractured geothermal reservoirs, the characteristics of the physical processes are severely affected by the local occurence of connected fractures. To resolve these structurally dominated processes, there is a need to develop discretization strategies that also limit computational effort. In this paper, we present an upscaling methodology for geothermal heat transport with fractures represented explicitly in the computational grid. The heat transport is modeled by an advection-conduction equation for the temperature, and solved on a highly irregular coarse grid that preserves the fracture heterogeneity. The upscaling is based on different strategies for the advective term and the conductive term. The coarse scale advective term is constructed from sums of fine scale fluxes, whereas the coarse scale conductive term is constructed based on numerically computed basis functions. The method naturally incorporates the coupling between solution variables in the matrix and in the fractures, respectively, via the discretization. In this way, explicit transfer terms that couple fracture and matrix solution variables are avoided. Numerical results show that the upscaling methodology performs well, in particular for large upscaling ratios, and that it is applicable also to highly complex fracture networks. 相似文献
16.
17.
Dsikowitzky L Nordhaus I Jennerjahn TC Khrycheva P Sivatharshan Y Yuwono E Schwarzbauer J 《Marine pollution bulletin》2011,62(4):851-80
Segara Anakan, a mangrove-fringed coastal lagoon in Indonesia, has a high diversity of macrobenthic invertebrates and is increasingly affected by human activities. We found >50 organic contaminants in water, sediment and macrobenthic invertebrates from the lagoon most of which were polycyclic aromatic compounds (PACs). Composition of PACs pointed to petrogenic contamination in the eastern lagoon. PACs mainly consisted of alkylated PAHs, which are more abundant in crude oil than parent PAHs. Highest total PAC concentration in sediment was above reported toxicity thresholds for aquatic invertebrates. Other identified compounds derived from municipal sewage and also included novel contaminants like triphenylphosphine oxide. Numbers of stored contaminants varied between species which is probably related to differences in microhabitat and feeding mode. Most contaminants were detected in Telescopium telescopium and Polymesoda erosa. Our findings suggest that more attention should be paid to the risk potential of alkylated PAHs, which has hardly been addressed previously. 相似文献
18.
Yvonne Cherubini Mauro Cacace Magdalena Scheck-Wenderoth Inga Moeck Björn Lewerenz 《Environmental Earth Sciences》2013,70(8):3619-3642
The deep thermal field in sedimentary basins can be affected by convection, conduction or both resulting from the structural inventory, physical properties of geological layers and physical processes taking place therein. For geothermal energy extraction, the controlling factors of the deep thermal field need to be understood to delineate favorable drill sites and exploitation compartments. We use geologically based 3-D finite element simulations to figure out the geologic controls on the thermal field of the geothermal research site Groß Schönebeck located in the E part of the North German Basin. Its target reservoir consists of Permian Rotliegend clastics that compose the lower part of a succession of Late Carboniferous to Cenozoic sediments, subdivided into several aquifers and aquicludes. The sedimentary succession includes a layer of mobilized Upper Permian Zechstein salt which plays a special role for the thermal field due to its high thermal conductivity. Furthermore, the salt is impermeable and due to its rheology decouples the fault systems in the suprasalt units from subsalt layers. Conductive and coupled fluid and heat transport simulations are carried out to assess the relative impact of different heat transfer mechanisms on the temperature distribution. The measured temperatures in 7 wells are used for model validation and show a better fit with models considering fluid and heat transport than with a purely conductive model. Our results suggest that advective and convective heat transport are important heat transfer processes in the suprasalt sediments. In contrast, thermal conduction mainly controls the subsalt layers. With a third simulation, we investigate the influence of a major permeable and of three impermeable faults dissecting the subsalt target reservoir and compare the results to the coupled model where no faults are integrated. The permeable fault may have a local, strong impact on the thermal, pressure and velocity fields whereas the impermeable faults only cause deviations of the pressure field. 相似文献
19.
Hylland K Tollefsen KE Ruus A Jonsson G Sundt RC Sanni S Røe Utvik TI Johnsen S Nilssen I Pinturier L Balk L Barsiene J Marigòmez I Feist SW Børseth JF 《Marine pollution bulletin》2008,56(3):414-429
Fisheries have been vital to coastal communities around the North Sea for centuries, but this semi-enclosed sea also receives large amounts of waste. It is therefore important to monitor and control inputs of contaminants into the North Sea. Inputs of effluents from offshore oil and gas production platforms (produced water) in the Norwegian sector have been monitored through an integrated chemical and biological effects programme since 2001. The programme has used caged Atlantic cod and blue mussels. PAH tissue residues in blue mussels and PAH bile metabolites in cod have confirmed exposure to effluents, but there was variation between years. Results for a range of biological effects methods reflected exposure gradients and indicated that exposure levels were low and caused minor environmental impact at the deployment locations. There is a need to develop methods that are sufficiently sensitive to components in produced water at levels found in marine ecosystems. 相似文献
20.
To investigate regional and interannual variability of the ecosystem in the Southern Ocean, a coupled circumpolar ice–ocean–plankton model has been developed. The ice–ocean component (known as BRIOS-2) is based on a modified version of the s-coordinate primitive equation model (SPEM) coupled to a dynamic–thermodynamic sea-ice model. The biological model (BIMAP) comprises two biogeochemical cycles – silica and nitrogen – and a prognostic iron compartment to include possible effects of micronutrient limitation. Simulations with the coupled ice–ocean–plankton model indicate that the physical–biological interaction is not limited to the effect of a varying surface mixed-layer depth. In the Pacific sector, large anomalies in winter mixed-layer depth cause an increased iron supply and enhance primary production and plankton biomass in the following summer, whereas in the Atlantic sector variability in primary production is caused mainly by fluctuations of oceanic upwelling. Thus, the Antarctic Circumpolar Wave (ACW) induces regional oscillations of phytoplankton biomass in both sectors, but not a propagating signal. Furthermore, interannual variability in plankton biomass and primary production is strong in the Coastal and Continental Shelf Zone and the Seasonal Ice Zone around the Antarctic continent. Interannual variability induced by the ACW has large effects on the regional scale, but the associated variability in biogenic carbon fluxes is small compared to the long-term carbon sequestration of the Southern Ocean. 相似文献