首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
大气科学   2篇
地球物理   14篇
地质学   10篇
天文学   1篇
自然地理   1篇
  2020年   2篇
  2018年   2篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
排序方式: 共有28条查询结果,搜索用时 484 毫秒
21.
In recent decades, increased extraction of groundwater for human and agriculture consumption has led to a substantial drop in groundwater level in large areas of across the world. Declining groundwater levels is a serious problem in itself and has multiple economic, social, cultural, political, security-related, and environmental externalities. The negative economic-environmental externalities of overextraction of groundwater in the Orzouiyeh plain in the Kerman Province, Iran, were evaluated using methods such as replacement cost, production function, market prices, shadow price, and the value of the input marginal product. After evaluating externalities, the Positive Mathematical Programming method was used to evaluate different water policies to reduce the consumption of groundwater. The total economic losses due to the externalities were calculated to equal 2.8 U.S. million dollars. The damages caused by environmental externalities were calculated to equal 436.1 U.S. million dollars. The results related to the positive planning model show that the best policy among different options, such as deficit irrigation policy or combined policies, involves implementation of pressurized irrigation systems.  相似文献   
22.
23.
Transition boundary between Zagros continental collision and Makran oceanic-continental subduction can be specified by two wide limits: (a) Oman Line is the seismicity boundary with a sizeable reduction in seismicity rate from Zagros in the west to Makran in the east; and (b) the Zendan-Minab-Palami (ZMP) fault system is believed to be a prominent tectonic boundary. The purpose of this paper is to analyze the stress field in the Zagros-Makran transition zone by the iterative joint inversion method developed by Vavrycuk (Geophysical Journal International 199:69-77, 2014). The results suggest a rather uniform pattern of the stress field around these two boundaries. We compare the results with the strain rates obtained from the Global Positioning System (GPS) network stations. In most cases, the velocity vectors show a relatively good agreement with the stress field except for the Bandar Abbas (BABS) station which displays a relatively large deviation between the stress field and the strain vector. This deviation probably reflects a specific location of the BABS station being in the transition zone between Zagros continental collision and Makran subduction zones.  相似文献   
24.
The distribution of earthquake magnitudes plays a crucial role in the estimation of seismic hazard parameters. Due to the complexity of earthquake magnitude distribution, non-parametric approaches are recommended over classical parametric methods. The main deficiency of the non-parametric approach is the lack of complete magnitude data in almost all cases. This study aims to introduce an imputation procedure for completing earthquake catalog data that will allow the catalog to be used for non-parametric density estimation. Using a Monte Carlo simulation, the efficiency of introduced approach is investigated. This study indicates that when a magnitude catalog is incomplete, the imputation procedure can provide an appropriate tool for seismic hazard assessment. As an illustration, the imputation procedure was applied to estimate earthquake magnitude distribution in Tehran, the capital city of Iran.  相似文献   
25.
Groundwater contamination is a well-known phenomenon, which occurs on local and regional scales in Izeh polje. The aims of this paper are investigation of the impact of human activities on the polje ecosystem, determination of the vulnerability of ground water, and to solve environmental problems. Nitrate contamination of groundwater in the Izeh polje was predicted using a solute transport model. The nitrate concentration in groundwater in most parts of Izeh polje is greater than maximum concentration permissible for drinking water, i.e., 45 mg/l. The main source of nitrate in the eastern underground areas of Izeh city is the domestic sewage. Bacterial pollution of shallow ground water in Izeh polje is severe and widespread. About 45% of ground water samples in May and September 2001 have positive MPN coliforms. Infiltration of polluted surface waters and decrease of water table depth, have lead to bacterial pollution of 80% of ground water samples in January 2002. The northeast, south and southwest areas of Izeh polje have higher pollution potential rather than its middle parts. The aquifer vulnerability indices in the middle, eastern, and northern parts of the polje are moderately lower as a result of decreased sediment size of the aquifer. The pollution in the polje depends on the amount and presence of pollutants. If they do exist, the possibility of pollution is considerable due to the coarseness of materials and shallow depth of groundwater table.  相似文献   
26.
Magnetotelluric (MT) and ground magnetic surveys were conducted on the Mahallat geothermal field situated in Markazi province, central Iran, as a primary part of the explorations and developments of a geothermal energy investigation program in the region. Mahallat region has the greatest geothermal fields in Iran. MT survey was performed in November 2011 on an 8 km profile crossing the hot springs with a total of 17 stations. The 2D inversion of the determinant MT data was performed using a 2D inversion routine based on the Occam approach. The 2D resistivity model obtained from the determinant data shows a low resistivity zone at 800-2000 m depth and a higher resistivity zone above the low resistivity zone, interpreted as geothermal reservoir and cap rock, respectively. It also revealed two major concealed faults which are acting as preferential paths for the circulation of hydrothermal fluids. To obtain more geophysical evidence, a ground magnetic survey with 5000 stations was also performed over an area of 200 km2 around the MT profile. Magnetic measurements show a main positive anomaly of about +1000 nT over the study area, which could be interpreted as an intrusive body with the high magnetic susceptibility (i.e. mafic and ultramafic rocks) into the sedimentary host rocks. We interpret the body as the heat source of the geothermal system. Structural index and depth estimation of the anomaly indicate that the intrusive body is similar to a cylinder extending from about one kilometer depth down to greater depths. The results of MT and magnetic investigations indicate a geothermal reservoir which proves the preliminary geological observations to a great extent.  相似文献   
27.
Uncertainty in depth–duration–frequency (DDF) curves is usually disregarded in the view of difficulties associated in assigning a value to it. In central Iran, precipitation duration is often long and characterized with low intensity leading to a considerable uncertainty in the parameters of the probabilistic distributions describing rainfall depth. In this paper, the daily rainfall depths from 4 stations in the Zayanderood basin, Iran, were analysed, and a generalized extreme value distribution was fitted to the maximum yearly rainfall for durations of 1, 2, 3, 4 and 5 days. DDF curves were described as a function of rainfall duration (D) and return period (T). Uncertainties of the rainfall depth in the DDF curves were estimated with the bootstrap sampling method and were described by a normal probability density function. Standard deviations were modeled as a function of rainfall duration and rainfall depth using 104 bootstrap samples for all the durations and return periods considered for each rainfall station.  相似文献   
28.
In this paper, an interpreter computer interactive software, named SeisART, is introduced which is employed for seismic facies analysis. Seismic facies analysis is considered as a technique for mapping geological changes using seismic data. In recent years, the number of seismic attributes and the size of seismic data have been increased. Therefore, the interpretation of seismic facies has become a more elusive issue. In a seismic facies analysis procedure, there are three main steps: (i) selecting appropriate attributes as the feature extraction task, (ii) defining the proper number of clusters, and (iii) utilizing an appropriate pattern recognition method. Interpreter plays a remarkable role in performing these steps, based on his/her knowledge, and also available tools and geological information. SeisART as a package-deal software includes numerous methods of feature extraction, validation, and pattern recognition. In a user-friendly environment, the interpreter is able to employ these utilities along with well-designed visualization tools for choosing the best methods to obtain and compare numerous results. Besides, owing to the uncertainty of seismic data, SeisART employs the Fuzzy system to gain more confidence with the seismic facies interpretation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号