首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   556篇
  免费   18篇
  国内免费   7篇
测绘学   6篇
大气科学   67篇
地球物理   121篇
地质学   193篇
海洋学   46篇
天文学   105篇
自然地理   43篇
  2023年   3篇
  2021年   5篇
  2020年   13篇
  2019年   12篇
  2018年   11篇
  2017年   11篇
  2016年   20篇
  2015年   8篇
  2014年   19篇
  2013年   33篇
  2012年   24篇
  2011年   27篇
  2010年   17篇
  2009年   27篇
  2008年   17篇
  2007年   29篇
  2006年   26篇
  2005年   18篇
  2004年   23篇
  2003年   20篇
  2002年   16篇
  2001年   16篇
  2000年   14篇
  1999年   15篇
  1998年   17篇
  1997年   12篇
  1996年   3篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   11篇
  1989年   4篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   9篇
  1983年   6篇
  1982年   4篇
  1981年   5篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1973年   5篇
  1972年   4篇
  1968年   2篇
  1957年   2篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
571.
572.
Fluvial systems and their preserved stratigraphic expression as the fill of evolving basins are controlled by multiple factors, which can vary both spatially and temporally, including prevailing climate, sediment provenance, localized changes in the rates of creation and infill of accommodation in response to subsidence, and diversion by surface topographic features. In basins that develop in response to halokinesis, mobilized salt tends to be displaced by sediment loading to create a series of rapidly subsiding mini‐basins, each separated by growing salt walls. The style and pattern of fluvial sedimentation governs the rate at which accommodation becomes filled, whereas the rate of growth of basin‐bounding salt walls governs whether an emergent surface topography will develop that has the potential to divert and modify fluvial drainage pathways and thereby dictate the resultant fluvial stratigraphic architecture. Discerning the relative roles played by halokinesis and other factors, such as climate‐driven variations in the rate and style of sediment supply, is far from straightforward. Diverse stratigraphic architectures present in temporally equivalent, neighbouring salt‐walled mini‐basins demonstrate the effectiveness of topographically elevated salt walls as agents that partition and guide fluvial pathways, and thereby control the loci of accumulation of fluvial successions in evolving mini‐basins: drainage pathways can be focused into a single mini‐basin to preserve a sand‐prone fill style, whilst leaving adjoining basins relatively sand‐starved. By contrast, over the evolutionary history of a suite of salt‐walled mini‐basins, region‐wide changes in fluvial style can be shown to have been driven by changes in palaeoclimate and sediment‐delivery style. The Triassic Moenkopi Formation of the south‐western USA represents the preserved expression of a dryland fluvial system that accumulated across a broad, low‐relief alluvial plain, in a regressive continental to paralic setting. Within south‐eastern Utah, the Moenkopi Formation accumulated in a series of actively subsiding salt‐walled mini‐basins, ongoing evolution of which exerted a significant control on the style of drainage and resultant pattern of stratigraphic accumulation. Drainage pathways developed axial (parallel) to salt walls, resulting in compartmentalized accumulation of strata whereby neighbouring mini‐basins record significant variations in sedimentary style at the same stratigraphic level. Despite the complexities created by halokinetic controls, the signature of climate‐driven sediment delivery can be deciphered from the preserved succession by comparison with the stratigraphic expression of part of the system that accumulated beyond the influence of halokinesis, and this approach can be used to demonstrate regional variations in climate‐controlled styles of sediment delivery.  相似文献   
573.
We present the seafloor morphology and shallow seismic structure of the continental slope south-east of the Balearic promontory and of the adjacent Algero-Balearic abyssal plain from multibeam and chirp sonar data. The main purpose of this research was to identify the sediment pathways from the Balearic promontory to the Algero-Balearic deep basin from the Early Pliocene to the Present. The morphology of the southern Balearic margin is controlled by a SW–NE structural trend, whose main expressions are the Emile Baudot Escarpment transform fault, and a newly discovered WSW–ENE trend that affects the SW end of the escarpment and the abyssal plain. We relate the two structural trends to right-lateral simple shear as a consequence of the Miocene westward migration of the Gibraltar Arc. Newly discovered steep and narrow volcanic ridges were probably enabled to grow by local transtension along the transform margin. Abyssal plain knolls and seahills relate to the subsurface deformation of early stage halokinetic structures such as salt rollers, salt anticlines, and salt pillows. The limited thickness of the overburden and the limited amount of deformation in the deep basin prevent the formation of more mature halokinetic structures such as diapirs, salt walls, bulbs, and salt extrusions. The uppermost sediment cover is affected by a dense pattern of sub-vertical small throw normal faults resulting from extensional stress induced in the overburden by subsurface salt deformation structures. Shallow gas seismic character and the possible presence of an active polygonal fault system suggest upward fluid migration and fluid and sediment expulsion at the seafloor through a probable mud volcano and other piercement structures. One large debris flow deposit, named Formentera Debris Flow, has been identified on the lower slope and rise of the south Formentera margin. Based on current observations, we hypothesize that the landslide originating the Formentera Debris Flow occurred in the Holocene, perhaps in historical times.
Angelo CamerlenghiEmail:
  相似文献   
574.
http://www.sciencedirect.com/science/article/pii/S1674987111001113   总被引:1,自引:0,他引:1  
The Rheic Ocean was one of the most important oceans of the Paleozoic Era.It lay between Laurentia and Gondwana from the Early Ordovician and closed to produce the vast Ouachita-Alleghanian -Variscan orogen during the assembly of Pangea.Rifting began in the Cambrian as a continuation of Neoproterozoic orogenic activity and the ocean opened in the Early Ordovician with the separation of several Neoproterozoic arc terranes from the continental margin of northern Gondwana along the line of a former suture.The rapid rate of ocean opening suggests it was driven by slab pull in the outboard lapetus Ocean.The ocean reached its greatest width with the closure of lapetus and the accretion of the periGondwanan arc terranes to Laurentia in the Silurian.Ocean closure began in the Devonian and continued through the Mississippian as Gondwana sutured to Laurussia to form Pangea.The ocean consequently plays a dominant role in the Appalachian-Ouachita orogeny of North America,in the basement geology of southern Europe,and in the Paleozoic sedimentary,structural and tectonothermal record from Middle America to the Middle East.Its closure brought the Paleozoic Era to an end.  相似文献   
575.
Gas hydrates affect the bulk physical properties of marine sediments, in particular, elastic parameters. Shear modulus is an important parameter for estimating the distribution of hydrates in the marine sediments. However, S-wave information is difficult to recover without proper datasets. Seafloor compliance, the transfer function between pressure induced by surface gravity waves and the associated seafloor deformation, is one of few techniques to study shear modulus in the marine sediments. The coherence between recorded time series of displacement and pressure provides a measure of the quality of the calculated transfer function, the seafloor compliance. Thus, it is important to understand how to collect high coherence datasets. Here we conducted a 10-month pilot experiment using broadband seismic sensors and differential pressure gauges. We found that data collected in shallow water depth and during rough seas gave high coherence. This study is the first time long-term data sets have been employed to investigate seafloor compliance data quality and its dependence on sea state. These results will help designing future large-scale compliance experiments to study anomalously high shear moduli associated with the presence of gas hydrate or cold vents, or alternatively anomalously low shear moduli, associated with partial melt and magma chamber.  相似文献   
576.
Understanding the dynamics of the Earth’s radiation belts is important for modeling and forecasting the intensities of energetic electrons in space. Wave diffusion processes are known to be responsible for loss and acceleration of electrons in the radiation belts. Several recent studies indicate pitch angle and energy mixed-diffusion are also important when considering the total diffusive effects. In this study, a two-dimensional Fokker Planck equation is solved numerically using the Alternating Direction Implicit method. Mixed diffusion due to whistler-mode chorus waves tends to slow down the total diffusion in the energy-pitch angle space, particularly at smaller equatorial pitch angles. We then incorporate the electron energy and pitch angle mixed diffusions due to whistler-model chorus waves into the 4-dimensional Radiation Belt Environment (RBE) model and study the effect of mixed diffusion during a storm in October 2002. The 4-D simulation results show that energy and pitch angle mixed diffusion decrease the electron fluxes in the outer belt while electron fluxes in the slot region are enhanced (up to a factor of 2) during storm time.  相似文献   
577.
The Lucaogou Formation carbonate-rich oil shale source rock is exposed at the southern margin of the Junggar Basin, Xinjiang, NW China. We have sampled it in detail and conducted microstructural, mineralogical and geochemical studies, including thin section petrography, UV fluorescence petrography, X-ray diffraction, vitrinite reflectance, bitumen reflectance, fluid inclusion analysis and Raman spectroscopy. Organic matter is disseminated through the carbonate-bearing siltstone source rocks and concentrated in numerous bedding parallel stylolites and in two sets of carbonate veins, one along bedding parallel fractures and the other cross-cutting stylolites and bedding. The research about maturity of organic matter finds vitrinite reflectance values increase from the dispersed kerogen (0.64%) to the stylolites (the one of oriented vitrinite is 0.72% and the one of migrated bitumen is 2.38%); Homogenization temperatures of fluid inclusions in veins containing hydrocarbon fluid inclusions show an increase from 178.5°C in the bedding parallel veins to 222°C in the cross-cutting veins, confirmed by Raman spectroscopy. These results support a model of progressive heating accompanied by fluid loss during later stages of thermal maturation of source rock and the onset of primary migration. Obviously, the occurrence of organic matter is the trace of hydrocarbon primary migration, and the bedding lamination surfaces and cross-cutting fissures are the principal pathways of hydrocarbon-bearing fluids migration. Bedding lamination surfaces evolved into stylolites along the earliest primary migration pathways, followed by bedding parallel and cross-cutting fissures.  相似文献   
578.
The celebrated 1972 Stockholm environmental conference focused attention on the condition of the world's environment. A twenty year retrospective summary is provided by the introduction and specialty papers on all facets of mountain society and habitat relationships. Theories, models and paradigms that guided mountain research are critically examined. Specific attention is given to the application of the ecology paradigm. Contemporary discoveries and developments about resource management in mountains are elucidated. Assessments of the mountain environment, including wildlife habitat, tourism and recreation, forests, hazards, deforestation, food plant biodiversity, risk and hazard, are provided by the specialty articles. These papers were prepared for the 1992 Earth Summit in Rio de Janeiro.  相似文献   
579.
Models to explain alluvial system development in rift settings commonly depict fans that are sourced directly from catchments formed in newly uplifted footwalls, which leads to the development of steep-sided talus-cone fans in the actively subsiding basin depocentre. The impact of basin evolution on antecedent drainage networks orientated close to perpendicular to a rift axis, and flowing over the developing hangingwall dip slope, remains relatively poorly understood. The aim of this study is to better understand the responses to rift margin uplift and subsequent intrabasinal fault development in determining sedimentation patterns in alluvial deposits of a major antecedent drainage system. Field-acquired data from a coarse-grained alluvial syn-rift succession in the western Gulf of Corinth, Greece (sedimentological logging and mapping) has allowed analysis of the spatial distribution of facies associations, stratigraphic architectural elements and patterns of palaeoflow. During the earliest rifting phase, newly uplifted footwalls redirected a previously established fluvial system with predominantly southward drainage. Footwall uplift on the southern basin margin at an initially relatively slow rate led to the development of an overfilled basin, within which an alluvial fan prograded to the south-west, south and south-east over a hangingwall dip slope. Deposition of the alluvial system sourced from the north coincided with the establishment of small-scale alluvial fans sourced from the newly uplifted footwall in the south. Deposits of non-cohesive debris flows close to the proposed hangingwall fan apex pass gradationally downstream into predominantly bedload conglomerate deposits indicative of sedimentation via hyperconcentrated flows laden with sand- and silt-grade sediment. Subsequent normal faulting in the hangingwall resulted in the establishment of further barriers to stream drainage, blocking flow routes to the south. This culminated in the termination of sediment supply to the basin depocentre from the north, and the onset of underfilled basin conditions as signified by an associated lacustrine transgression. The evolution of the fluvial system described in this study records transitions between three possible end-member types of interaction between active rifting and antecedent drainage systems: (a) erosion through an uplifted footwall, (b) drainage diversion away from an uplifted footwall and (c) deposition over the hangingwall dip slope. The orientation of antecedent drainage pathways at a high angle to the trend of a developing rift axis, replete with intrabasinal faulting, exerts a primary control on the timing and location of development of overfilled and underfilled basin states in evolving depocentres.  相似文献   
580.
Loess has been recognized on the glacial land surface of the Green Bay Lobe for over 100 yr, but no systematic explanation of the source of the loess has been advanced. Intriguingly, the loess on the Green Bay Lobe land surface is thicker than predicted by regional thinning trends from the Mississippi Valley and is geographically separated from much loess of southwest Wisconsin by a sandy region devoid of loess. Mapping based on soil survey interpretation indicates that the loess occurs above an escarpment marking the eastern end of the sandy loess-free region. Particle size fining trends demonstrate that the loess was transported by northwesterly winds. Clay mineralogy of the Green Bay Lobe loess is distinctly different than glaciogenic sediments and matches loess of the Mississippi Valley, indicating a regional source and long distance transport of the loess. We propose the loess was transported from the regional source along a surface of transport produced by migration of eolian sand through low-relief landscapes including the glacial Lake Wisconsin basin. Eolian sand migration caused repeated entrainment of dust leading to east-southeastward transport. The loess accumulated above an escarpment that limited sand mobility and re-entrainment of loess beyond this topographic barrier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号