We study and compare five different combinations of finite element spaces for approximating the coupled flow and solid deformation system, so-called Biot’s equations. The permeability and porosity fields are heterogeneous and depend on solid displacement and fluid pressure. We provide detailed comparisons among the continuous Galerkin, discontinuous Galerkin, enriched Galerkin, and two types of mixed finite element methods. Several advantages and disadvantages for each of the above techniques are investigated by comparing local mass conservation properties, the accuracy of the flux approximation, number of degrees of freedom (DOF), and wall and CPU times. Three-field formulation methods with fluid velocity as an additional primary variable generally require a larger number of DOF, longer wall and CPU times, and a greater number of iterations in the linear solver in order to converge. The two-field formulation, a combination of continuous and enriched Galerkin function space, requires the fewest DOF among the methods that conserve local mass. Moreover, our results illustrate that three out of the five methods conserve local mass and produce similar flux approximations when conductivity alteration is included. These comparisons of the key performance indicators of different combinations of finite element methods can be utilized to choose the preferred method based on the required accuracy and the available computational resources.
In the last five decades, many informal communities in Accra, Ghana have suffered from annual flood hazards. Residents of these communities appear to have successfully resisted evictions by city authorities; survived flood hazards and poor environmental health conditions. These flood affected households continue to survive with increasing housing and population densities in the face of these annual floods. Are they becoming resilient? Have residents built adaptive capacities through learning experiences from previous flood occurrences and evictions attempts? What has produced and continued to shape their responses to flooding? What can be learned from this supposed grassroots resilience to inform flood management in urban Africa? Using case studies of three informal communities of Glefe, Agbogbloshie and Old Fadama, this paper explores the gradual and evolving adaptive capacities and social resilience to flood hazards among poor urban dwellers. The paper reveals the depth of understanding and embodied nature of flood experiences among affected slum dwellers and how these are gradually being transformed into adaptive capacities and shaping their responses. In the absence of efficient state flood interventions, there are emerging and enduring flood responses and adaptation practices shaped by residents’ social networks, political alliances and sense of place. These responses translates into continuous re-structuring of housing units, construction of communal drains, creation of local evacuation teams and safe havens. Urban policy contributions that can be learned from these emerging grassroots capacities for flood vulnerability management have been proposed. 相似文献
In order to constrain better the distribution, age, geochemistry and origin of widespread Cenozoic intraplate volcanism on Zealandia, the New Zealand micro-continent, we report new 40Ar/39Ar and geochemical (major and trace element and Sr–Nd–Hf–Pb isotope) data from offshore (Chatham Rise, Campbell and Challenger Plateaus) and onland (North, South, Auckland, Campbell, Chatham and Antipodes Islands of New Zealand) volcanism on Zealandia. The samples include nephelinite, basanite through phonolite, alkali basalt through trachyte/rhyolite, and minor tholeiite and basaltic andesite, all of which have ocean island basalt (OIB)-type trace element signatures and which range in age from 64.8 to 0.17 Ma. Isotope ratios show a wide range in composition (87Sr/86Sr = 0.7027–0.7050, 143Nd/144Nd = 0.5128–0.5131, 177Hf/176Hf = 0.2829–0.2831, 206Pb/204Pb = 18.62–20.67, 207Pb/204Pb = 15.54–15.72 and 208Pb/204Pb = 38.27–40.34) with samples plotting between mid-ocean-ridge basalts (MORB) and Cretaceous New Zealand intraplate volcanic rocks.Major characteristics of Zealandia's Cenozoic volcanism include longevity, irregular distribution and lack of age progressions in the direction of plate motion, or indeed any systematic temporal or spatial geochemical variations. We believe that these characteristics can be best explained in the context of lithospheric detachment, which causes upwelling and melting of the upper asthenospheric mantle and portions of the removed lithosphere. We propose that a large-scale seismic low-velocity anomaly, that stretches from beneath West Antarctica to Zealandia at a depth of > 600 km may represent a geochemical reservoir that has been in existence since the Cretaceous, and has been supplying the upper mantle beneath Zealandia with HIMU-type plume material throughout the Cenozoic. In addition, the sources of the Cenozoic intraplate volcanism may be at least partially derived through melting of locally detached Zealandia lower lithosphere. 相似文献
The cliffed and active dune coastal region of Broome provides an excellent record of Pleistocene and Holocene stratigraphy of desert environments interfacing with the Indian Ocean. The Mesozoic Broome Sandstone is the basal stratigraphic unit in the area and is overlain by Pleistocene red desert quartz sand (Mowanjum Sand). Modern coastal processes of waves, wind and tide have resulted in distinctive sedimentary bodies (stratigraphic units) clearly linked to the sedimentary environment. The Mowanjum Sand, reworked by coastal winds, generates the landward-ingressing orange quartzose Churchill Sand, or reworked by waves and abraded to white sand with the addition of carbonate grains that form the beaches (Cable Beach Sand) and with eolian action, coastal dunes or inland-ingressing white dunes (Shoonta Hill Sand). These sedimentary bodies and stratigraphic units form a template with which to locate and interpret archaeological middens and Indigenous occupation over the past 5000?years in a context of coastal occupation, coastal stability, mean sea-level changes, climate changes, and availability of marine food and freshwater. Shell middens and stone artefacts form definitive layers or horizons in relation to the stratigraphy, in places in situ, and elsewhere reworked as sheets and plumes; understanding their inter-relationships has enabled the unravelling of the archaeological history and relating Indigenous occupation to biofacies and lithofacies. The array of sedimentary, biofacies and stratigraphic units are of national geoheritage significance in their own right. The addition of archaeological deposits as stratigraphic units provides a link between geoheritage and archaeology, where the archaeological materials are viewed as part of the complex stratigraphic story, part of the coastal history, and part of the geoheritage story. 相似文献
Urbanization, land subsidence and sea level rise will increase vulnerability of the urbanized low-lying areas in the western
part of the Netherlands. In this article possibilities are explored to reduce vulnerability of these areas by implementing
alternative water management options. Two main water management fields are distinguished, water supply and flood control.
A four-component vulnerability framework is presented that includes threshold capacity, coping capacity, recovery capacity,
and adaptive capacity. By using the vulnerability framework it is shown that current water supply and flood control strategies
in the Netherlands focus on increasing threshold capacity by constructing higher and stronger dikes, improved water storage
and delivery infrastructure. A complete vulnerability decreasing strategy requires measures that include all four capacities.
Flood damage reduction, backup water supply systems and emergency plans are measures that can contribute to increasing coping
capacity. Recovery capacity can be increased by multi-source water supply, insurance, or establishing disaster funds. Adaptive
capacity can be developed by starting experiments with new modes of water supply and urbanization. Including all four components
of the vulnerability framework enables better understanding of water and climate related vulnerability of urban areas and
enables developing more complete water management strategies to reduce vulnerability. 相似文献
In cold regions, hydrologic systems possess seasonal and perennial ice-free zones (taliks) within areas of permafrost that control and are enhanced by groundwater flow. Simulation of talik development that follows lake formation in watersheds modeled after those in the Yukon Flats of interior Alaska (USA) provides insight on the coupled interaction between groundwater flow and ice distribution. The SUTRA groundwater simulator with freeze–thaw physics is used to examine the effect of climate, lake size, and lake–groundwater relations on talik formation. Considering a range of these factors, simulated times for a through-going sub-lake talik to form through 90 m of permafrost range from ~200 to >?1,000 years (vertical thaw rates <?0.1–0.5 m?yr?1). Seasonal temperature cycles along lake margins impact supra-permafrost flow and late-stage cryologic processes. Warmer climate accelerates complete permafrost thaw and enhances seasonal flow within the supra-permafrost layer. Prior to open talik formation, sub-lake permafrost thaw is dominated by heat conduction. When hydraulic conditions induce upward or downward flow between the lake and sub-permafrost aquifer, thaw rates are greatly increased. The complexity of ground-ice and water-flow interplay, together with anticipated warming in the arctic, underscores the utility of coupled groundwater-energy transport models in evaluating hydrologic systems impacted by permafrost. 相似文献
The Hardangervidda-Rogaland Block within southwest Norway is host to ~1.52 to 1.48 Ga continental building and variable reworking during the ~1.1 to 0.9 Ga Sveconorwegian orogeny. Due to the lack of geochronological and geochemical data, the timing and tectonic setting of early Mesoproterozoic magmatism has long been ambiguous. This paper presents zircon U–Pb–Hf–O isotope data combined with whole-rock geochemistry to address the age and petrogenesis of basement units within the Suldal region, located in the centre of the Hardangervidda-Rogaland Block. The basement comprises variably deformed grey gneisses and granitoids that petrologically and geochemically resemble mature volcanic arc lithologies. U–Pb ages confirm that magmatism occurred from ~1,521 to 1,485 Ma, and conspicuously lack any xenocrystic inheritance of distinctly older crust. Hafnium isotope data range from εHf(initial) +1 to +11, suggesting a rather juvenile magmatic source, but with possible involvement of late Palaeoproterozoic crust. Oxygen isotope data range from mantle-like (δ18O ~5 ‰) to elevated (~10 ‰) suggesting involvement of low-temperature altered material (e.g., supracrustal rocks) in the magma source. The Hf–O isotope array is compatible with mixing between mantle-derived material with young low-temperature altered material (oceanic crust/sediments) and older low-temperature altered material (continent-derived sediments). This, combined with a lack of xenoliths and xenocrysts, exposed older crust, AFC trends and S-type geochemistry, all point to mixing within a deep-crustal magma-generation zone. A proposed model comprises accretion of altered oceanic crust and the overlying sediments to a pre-existing continental margin, underthrusting to the magma-generation zone and remobilisation during arc magmatism. The geodynamic setting for this arc magmatism is comparable with that seen in the Phanerozoic (e.g., the Sierra Nevada and Coast Range batholiths), with compositions in the Suldal Sector reaching those of average upper continental crust. As within these younger examples, factors that drive magmatism towards the composition of the average continental crust include the addition of sedimentary material to magma source regions, and delamination of cumulate material. Underthrusting of sedimentary materials and their subsequent involvement in arc magmatism is perhaps a more widespread mechanism involved in continental growth than is currently recognised. Finally, the Suldal Arc magmatism represents a significant juvenile crustal addition to SW Fennoscandia. 相似文献
The maximum limits of the assemblage albiteforsterite have been determined experimentally at high pressures and temperatures. At subsolidus temperatures, albite plus forsterite is replaced at high pressures by jadeitic clinopyroxene and enstatitic orthopyroxene. The boundary for this reaction lies within experimental uncertainity of that for jadeite=albite+nepheline. Melting of albite+forsterite at high pressures produces enstatite+liquid, which is different from the low-pressure eutectic behavior. Melting rates are very slow and several hundred hours are required to establish equilibrium near the solidus. The subsolidus boundary for albite plus forsterite lies near that for sanidine plus forsterite, but with a shallower slope which more closely matches that of anorthite plus forsterite. Both albite plus forsterite and anorthite plus forsterite are replaced at high pressures by an assemblage containing clinopyroxene plus orthopyroxene, unlike sanidine plus forsterite, which is replaced by a feldspathoid plus orthopyroxene. The presence of sodium enlarges the depth region over which plagioclase lherzolite can stably exist; it may also stabilize alkali feldspar plus olivine in crustal rocks. 相似文献