首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   722篇
  免费   51篇
  国内免费   12篇
测绘学   36篇
大气科学   59篇
地球物理   192篇
地质学   265篇
海洋学   74篇
天文学   74篇
综合类   2篇
自然地理   83篇
  2023年   2篇
  2022年   2篇
  2021年   21篇
  2020年   18篇
  2019年   26篇
  2018年   30篇
  2017年   28篇
  2016年   37篇
  2015年   28篇
  2014年   39篇
  2013年   70篇
  2012年   39篇
  2011年   31篇
  2010年   30篇
  2009年   40篇
  2008年   32篇
  2007年   36篇
  2006年   24篇
  2005年   25篇
  2004年   21篇
  2003年   15篇
  2002年   17篇
  2001年   15篇
  2000年   14篇
  1999年   13篇
  1998年   9篇
  1997年   9篇
  1996年   6篇
  1995年   7篇
  1994年   11篇
  1993年   5篇
  1992年   3篇
  1991年   10篇
  1990年   5篇
  1989年   8篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   7篇
  1984年   8篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1978年   2篇
  1977年   4篇
  1973年   2篇
  1972年   2篇
  1967年   2篇
  1966年   3篇
排序方式: 共有785条查询结果,搜索用时 0 毫秒
81.
82.
Proglacial aquifers are an important water store in glacierised mountain catchments that supplement meltwater-fed river flows and support freshwater ecosystems. Climate change and glacier retreat will perturb water storage in these aquifers, yet the climate-glacier-groundwater response cascade has rarely been studied and remains poorly understood. This study implements an integrated modelling approach that combines distributed glacio-hydrological and groundwater models with climate change projections to evaluate the evolution of groundwater storage dynamics and surface-groundwater exchanges in a temperate, glacierised catchment in Iceland. Focused infiltration along the meltwater-fed Virkisá River channel is found to be an important source of groundwater recharge and is projected to provide 14%–20% of total groundwater recharge by the 2080s. The simulations highlight a mechanism by which glacier retreat could inhibit river recharge in the future due to the loss of diurnal melt cycling in the runoff hydrograph. However, the evolution of proglacial groundwater level dynamics show considerable resilience to changes in river recharge and, instead, are driven by changes in the magnitude and seasonal timing of diffuse recharge from year-round rainfall. The majority of scenarios simulate an overall reduction in groundwater levels with a maximum 30-day average groundwater level reduction of 1 m. The simulations replicate observational studies of baseflow to the river, where up to 15% of the 30-day average river flow comes from groundwater outside of the melt season. This is forecast to reduce to 3%–8% by the 2080s due to increased contributions from rainfall and meltwater runoff. During the melt season, groundwater will continue to contribute 1%–3% of river flow despite significant reductions in meltwater runoff inputs. Therefore it is concluded that, in the proglacial region, groundwater will continue to provide only limited buffering of river flows as the glacier retreats.  相似文献   
83.
In the sub‐humid Western Boreal Plains of Alberta, where evapotranspiration often exceeds precipitation, trembling aspen (Populus tremuloides Michx.) uplands often depend on adjacent peatlands for water supply through hydraulic redistribution. Wildfire is common in the Boreal Plains, so the resilience of the transfer of water from peatlands to uplands through roots immediately following wildfire may have implications for aspen succession. The objective of this research was to characterize post‐fire peatland‐upland hydraulic connectivity and assess controls on aspen transpiration (as a measure of stress and productivity) among landscape topographic positions. In May 2011, a wildfire affected 90,000 ha of north central Alberta, including the Utikuma Region Study Area (URSA). Portions of an URSA glacio‐fluval outwash lake catchment were burned, which included forests and a small peatland. Within 1 year after the fire, aspen were found to be growing in both the interior and margins of this peatland. Across recovering land units, transpiration varied along a topographic gradient of upland midslope (0.42 mm hr?1) > upland hilltop (0.29 mm hr?1) > margin (0.23 mm hr?1) > peatland (0.10 mm hr?1); similar trends were observed with leaf area and stem heights. Although volumetric water content was below field capacity, P. tremuloides were sustained through roots present, likely before fire, in peatland margins through hydraulic redistribution. Evidence for this was observed through the analysis of oxygen (δ18O) and hydrogen (δ2H) isotopes where upland xylem and peat core signatures were ?10.0‰ and ?117.8‰ and ?9.2‰ and ?114.0‰, respectively. This research highlights the potential importance of hydraulic redistribution to forest sustainability and recovery, in which the continued delivery of water may result in the encroachment of aspen into peatlands. As such, we suggest that through altering ecosystem services, peatland margins following fire may be at risk to aspen colonization during succession.  相似文献   
84.
Knowles  S.H.  Picone  J.M.  Thonnard  S.E.  Nicholas  A.C. 《Solar physics》2001,204(1-2):387-397
Geomagnetic storms driven by solar eruptions are known to have significant effects on the total density of the upper atmosphere in the altitude range 250–1000 km. This in turn causes a measurable effect on the orbits of resident space objects in this altitude range. We analyzed a sample of these orbits, both from sensor data and from orbital element sets, during the period surrounding the 14 July 2000 solar activity. We present information concerning the effects of this event on the orbits of resident space objects and how well accepted atmospheric models were able to represent it. As part of this analysis, we describe a technique for extracting atmospheric density information from orbital element sets. On daily time scales, the effect of geomagnetic activity appears to be more important than that of prompt radiation. However, the limitations in time and amplitude quantization of the accepted solar indices are evident. A limited comparison is also made with previous solar storm events.  相似文献   
85.
86.
Flow resistance in mountain streams is important for assessing flooding hazard and quantifying sediment transport and bedrock incision in upland landscapes. In such settings, flow resistance is sensitive to grain-scale roughness, which has traditionally been characterized by particle size distributions derived from laborious point counts of streambed sediment. Developing a general framework for rapid quantification of resistance in mountain streams is still a challenge. Here we present a semi-automated workflow that combines millimeter- to centimeter-scale structure-from-motion (SfM) photogrammetry surveys of bed topography and computational fluid dynamics (CFD) simulations to better evaluate surface roughness and rapidly quantify flow resistance in mountain streams. The workflow was applied to three field sites of gravel, cobble, and boulder-bedded channels with a wide range of grain size, sorting, and shape. Large-eddy simulations with body-fitted meshes generated from SfM photogrammetry-derived surfaces were performed to quantify flow resistance. The analysis of bed microtopography using a second-order structure function identified three scaling regimes that corresponded to important roughness length scales and surface complexity contributing to flow resistance. The standard deviation σz of detrended streambed elevation normalized by water depth, as a proxy for the vertical roughness length scale, emerges as the primary control on flow resistance and is furthermore tied to the characteristic length scale of rough surface-generated vortices. Horizontal length scales and surface complexity are secondary controls on flow resistance. A new resistance predictor linking water depth and vertical roughness scale, i.e.  H/σz, is proposed based on the comparison between σz and the characteristic length scale of vortex shedding. In addition, representing streambeds using digital elevation models (DEM) is appropriate for well-sorted streambeds, but not for poorly sorted ones under shallow and medium flow depth conditions due to the missing local overhanging features captured by fully 3D meshes which modulate local pressure gradient and thus bulk flow separation and pressure distribution. An appraisal of the mesh resolution effect on flow resistance shows that the SfM photogrammetry data resolution and the optimal CFD mesh size should be about 1/7 to 1/14 of the standard deviation of bed elevation. © 2019 John Wiley & Sons, Ltd.  相似文献   
87.
88.
89.
Levee effects upon flood levels: an empirical assessment   总被引:1,自引:0,他引:1  
This study used stream gauge records to assess the impact of levees on flood levels, providing an empirical test of theoretical and model predictions of the effects on local flood response. Focusing upon a study area in Illinois and Iowa for which levee records were available, we identified 203 gauges with ≥ 50 years hydrological record, including 15 gauges where a levee was constructed during the period of record. At these sites, step‐change analysis utilizing regression residuals tested levee‐related stage changes and levels of significance and quantified the magnitudes of stage changes. Despite large differences in stream sizes, levee alignments, and degree of floodplain constriction, the post‐levee rating‐curve adjustments showed consistent signatures. For all the study sites, stages for below bankfull (non‐flood) conditions were unaffected by levee construction. For above bankfull (flood) conditions, stages at sites downstream of their associated levees also were statistically indistinguishable before versus after levee construction. However, at all sites upstream of levees or within leveed reaches, stages increased for above bankfull conditions. These increases were abrupt, statistically significant, and generally large in magnitude – ranging up to 2.3 m (Wabash River at Mt. Carmel, IL). Stage increases began when discharge increased above bankfull flow and generally increased in magnitude with discharge until the associated levee(s) were overtopped. Detailed site assessments and supplementary data available from some sites helped document the dominant mechanisms by which levees can increase flood levels. Levee construction reduces the area of the floodplain open to storage of flood waters and reduces the width of the floodplain open to conveyance of flood flow. Floodplain conveyance often is underestimated or ignored, but Acoustic Doppler Current Profiler (ADCP) measurements analysed here confirm previous studies that up to 70% or more of the total discharge during large floods (~3% chance flood) can move over the floodplain. Upstream of levees and levee‐related floodplain constriction, backwater effects reduce flow velocities relative to pre‐levee conditions and, thus, increase stages for a given discharge. The empirical results here confirm a variety of theoretical predictions of levee effects but suggest that many one‐dimensional model‐based predictions of levee‐related stage changes may underestimate actual levee impacts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
90.
In this investigation, four scenarios were used to quantify the balance between the benefits of levees for flood protection and their potential to increase flood risk using Hazards U.S. Multi-Hazard flood-loss software and hydraulic modeling of the Middle Mississippi River (MMR). The goals of this study were (1) to quantify the flood exposure under different flood-control configurations and (2) to assess the relative contributions of various engineered structures and flood-loss strategies to potential flood losses. Removing all the flood-control structures along the MMR, without buyouts or other mitigation, reduced the average flood stages between 2.3 m (100-year flood) and 2.5 m (500-year), but increased the potential flood losses by $4.3–6.7 billion. Removing the agricultural levees downstream of St. Louis decreased the flood stages through the metro region by ~1.0 m for the 100- and 500-year events; flood losses, without buyouts or other mitigation, were increased by $4.3–6.7 billion. Removing the agricultural levees downstream of St. Louis decreased the flood stages through the metro region by ~1.0 m for the 100- and 500-year events; flood losses, without buyouts or other mitigation, were increased by 155 million for the 100-year flood, but were decreased by $109 million for the 500-year flood. Thus, agricultural levees along the MMR protect against small- to medium-size floods (up to the ~100-year flood level) but cause more damage than they prevent during large floods such as the 500-year flood. Buyout costs for the all the buildings within the 500-year floodplain downstream of urban flood-control structures near St. Louis are ~40% less than the cost of repairing the buildings damaged by the 500-year flood. This suggests large-scale buyouts could be the most cost-effective option for flood loss mitigation for properties currently protected by agricultural levees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号