首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   711篇
  免费   25篇
  国内免费   2篇
测绘学   4篇
大气科学   72篇
地球物理   165篇
地质学   228篇
海洋学   65篇
天文学   88篇
综合类   4篇
自然地理   112篇
  2022年   7篇
  2021年   7篇
  2020年   12篇
  2019年   16篇
  2018年   11篇
  2017年   12篇
  2016年   24篇
  2015年   23篇
  2014年   20篇
  2013年   41篇
  2012年   31篇
  2011年   30篇
  2010年   26篇
  2009年   39篇
  2008年   23篇
  2007年   35篇
  2006年   22篇
  2005年   33篇
  2004年   21篇
  2003年   26篇
  2002年   26篇
  2001年   25篇
  2000年   18篇
  1999年   15篇
  1998年   20篇
  1997年   7篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   4篇
  1992年   12篇
  1991年   7篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1987年   8篇
  1986年   9篇
  1985年   5篇
  1984年   12篇
  1983年   10篇
  1982年   9篇
  1981年   10篇
  1980年   8篇
  1979年   12篇
  1978年   2篇
  1977年   3篇
  1976年   5篇
  1973年   8篇
  1970年   1篇
  1969年   1篇
排序方式: 共有738条查询结果,搜索用时 592 毫秒
681.
The interaction of linear waves with a uniform, bottom-mounted, surface-piercing cylinder whose diameter exhibits a cosine-type variation is investigated. Two solution methods are presented. One method is based on a perturbation theory, using a perturbation parameter defined in terms of the surface geometry of the cylinder. The analysis includes terms up to the first-order in this parameter, where the zeroth-order solution corresponds to a circular cylinder. The velocity potentials at the zeroth and first orders are expressed as eigenfunction expansions involving unknown coefficients that are subsequently determined through the cylinder boundary conditions. The second method is based on Green's theorem and gives rise to an integral equation for the fluid velocity potential on the cylinder surface. A comparison between the results of these two methods has proved that they are in good agreement for small values of the perturbation parameter. Numerical results are presented that illustrate the influence of the magnitude and frequency of these perturbations on the resulting hydrodynamic force and the wave runup on the cylinder.  相似文献   
682.
The sensitivity of the response of a typical AUV to changes in hydrodynamic parameters is examined. The analysis is primarily performed using a computer model of an axi-symmetric vehicle typical of many AUVs in service today. The vehicle used is the Canadian Self-Contained Off-the-shelf Underwater Testbed (C-SCOUT), designed and built by graduate and work term students. The fully nonlinear computer model is based on Newton–Euler equations of motion, and uses the component build-up method to describe the excitation forces. The hydrodynamic parameters are varied in a series of simulations with the computer model; the response being analyzed for specific performance indicators.  相似文献   
683.
684.
685.
Abstract West Rota Volcano (WRV) is a recently discovered extinct submarine volcano in the southern Mariana Arc. It is large (25 km diameter base), shallow (up to 300 m below sealevel), and contains a large caldera (6 × 10 km, with up to 1 km relief). The WRV lies near the northern termination of a major NNE‐trending normal fault. This and a second, parallel fault just west of the volcano separate uplifted, thick frontal arc crust to the east from subsiding, thin back‐arc basin crust to the west. The WRV is distinct from other Mariana Arc volcanoes: (i) it consists of a lower, predominantly andesite section overlain by a bimodal rhyolite‐basalt layered sequence; (ii) andesitic rocks are locally intensely altered and mineralized; (iii) it has a large caldera; and (iv) WRV is built on a major fault. Submarine felsic calderas are common in the Izu and Kermadec Arcs but are otherwise unknown from the Marianas and other primitive, intraoceanic arcs. 40Ar–39Ar dating indicates that andesitic volcanism comprising the lower volcanic section occurred 0.33–0.55 my ago, whereas eruption of the upper rhyolites and basalts occurred 37–51 thousand years ago. Four sequences of rhyolite pyroclastics each are 20–75 m thick, unwelded and show reverse grading, indicating submarine eruption. The youngest unit consists of 1–2 m diameter spheroids of rhyolite pumice, interpreted as magmatic balloons, formed by relatively quiet effusion and inflation of rhyolite into the overlying seawater. Geochemical studies indicate that felsic magmas were generated by anatexis of amphibolite‐facies meta‐andesites, perhaps in the middle arc crust. The presence of a large felsic volcano and caldera in the southern Marianas might indicate interaction of large normal faults with a mid‐crustal magma body at depth, providing a way for viscous felsic melts to reach the surface.  相似文献   
686.
687.
The fjord landscape of South America, stretching ~ 1500 km between Golfo Corcovado (~ 43°S) and Tierra del Fuego (~ 56°S), is the largest continuous fjord landscape on Earth. This paper presents the results of new structural geological and geomorphological mapping of this landscape using optical satellite images and digital elevation models. First-order geological structures are represented by strike-slip faults forming lineaments up to hundreds of kilometres long. The strike-slip faulting has been active since Late Cretaceous times and is responsible for the presence of a conspicuous structural cleavage visible as lineaments up to ~ 10 km long. A detailed analysis of these second-order lineaments from digital image data was carried out in three sectors. In Sector 1, located northwest of the North Patagonian Icefield, there are three distinct mean orientations, characterized by a main nearly orogen-parallel orientation (az. ~ 145°) and two orogen-oblique secondary orientations (az. ~ 20° and az. ~ 65°). In Sector 2, located west of the South Patagonian Icefield, there are also three separate mean orientations, with most of the lineaments concentrated between azimuths 0° and 80° (mean at ~ 36°); and two other orogen-oblique means at azimuth ~ 122° and ~ 163°. In Sector 3, around the Cordillera Darwin, there is a single main orogen-parallel mean at ~ 100–115°. In all three sectors, mapped fjord orientations bear a striking similarity to the structural data, with fjords orientated preferentially in the same direction as structural lineaments. We infer that successive glaciations followed the same ice-discharge routes, widening and deepening pre-existing geological structures at the expense of the surrounding terrain to create the fjord landscape. This study has broader implications for ice sheet reconstructions and landscape evolution beneath ice sheets because we demonstrate that the primary control on fjord development in glaciated areas is geological and not glaciological.  相似文献   
688.
In response to growing concern about impacts of upland agricultural land management on flood risk, an intensely instrumented experimental catchment has been established at Pontbren, a sheep‐farmed headwater catchment of the River Severn, UK. Primary aims are to develop understanding of the processes governing flood generation and the associated impacts of land management practices, and to bridge the gap between process understanding and ability to predict effects on downstream flooding. To achieve this, the experiment is designed to operate at plot (~100 m2), hillslope (~0·1 km2) and small catchment scale (~10 km2). Hillslope‐scale data, from an under‐drained, agriculturally ‘improved’ pasture, show that drain flow is a dominant runoff process. However, depending on antecedent moisture conditions, overland flow may exceed drain flow rates and can be an important contributor to peak flow runoff at the hillslope‐scale. Flow, soil tension data and tracer tests confirm the importance of macropores and presence of perched water tables under ‘normal’ wet conditions. Comparisons of pasture runoff with that from within a 10 year‐old tree shelterbelt show significantly reduced overland flow due to the presence of trees and/or absence of sheep. Comparisons of soil hydraulic properties show significant increases in hydraulic conductivity and saturated moisture content of soil under trees compared to adjacent improved pasture. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
689.
法理地震学的用途之一就是帮助核查“全面禁止核试验条约”的执行情况。法理地震学家面临的一个重要挑战是将每年发生的成千上万次天然地震与可能违反条约的地下爆破区别开来。识别方法主要有4种:(a)体波与面波的震级比,(b)高频P波与S波能量比,(c)基于模型的方法,(d)震源深度。方法(a)和(b)有经验基础。方法(a)~(c)的不足是对全球地质学介质范围内激发的地下爆破缺少一个等效的弹性震源。可靠的常规震源深度的确定已被证明非常困难。然而,过去的十几年获得的在识别可疑震源方面的经验说明,尽管没有单一的方法能够长期奏效,但巧妙地独创性地应用各种互补方法通常能够解决可疑震源识别问题。  相似文献   
690.
Modeling geomorphic evolution in estuaries is necessary to model the fate of legacy contaminants in the bed sediment and the effect of climate change, watershed alterations, sea level rise, construction projects, and restoration efforts. Coupled hydrodynamic and sediment transport models used for this purpose typically are calibrated to water level, currents, and/or suspended-sediment concentrations. However, small errors in these tidal-timescale models can accumulate to cause major errors in geomorphic evolution, which may not be obvious. Here we present an intermediate step towards simulating decadal-timescale geomorphic change: calibration to estimated sediment fluxes (mass/time) at two cross-sections within an estuary. Accurate representation of sediment fluxes gives confidence in representation of sediment supply to and from the estuary during those periods. Several years of sediment flux data are available for the landward and seaward boundaries of Suisun Bay, California, the landward-most embayment of San Francisco Bay. Sediment flux observations suggest that episodic freshwater flows export sediment from Suisun Bay, while gravitational circulation during the dry season imports sediment from seaward sources. The Regional Oceanic Modeling System (ROMS), a three-dimensional coupled hydrodynamic/sediment transport model, was adapted for Suisun Bay, for the purposes of hindcasting 19th and 20th century bathymetric change, and simulating geomorphic response to sea level rise and climatic variability in the 21st century. The sediment transport parameters were calibrated using the sediment flux data from 1997 (a relatively wet year) and 2004 (a relatively dry year). The remaining years of data (1998, 2002, 2003) were used for validation. The model represents the inter-annual and annual sediment flux variability, while net sediment import/export is accurately modeled for three of the five years. The use of sediment flux data for calibrating an estuarine geomorphic model guarantees that modeled geomorphic evolution will not exceed the actual supply of sediment from the watershed and seaward sources during the calibration period. Decadal trends in sediment supply (and therefore fluxes) can accumulate to alter decadal geomorphic change. Therefore, simulations of future geomorphic evolution are bolstered by this intermediate calibration step.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号