全文获取类型
收费全文 | 703篇 |
免费 | 13篇 |
国内免费 | 2篇 |
专业分类
测绘学 | 4篇 |
大气科学 | 76篇 |
地球物理 | 158篇 |
地质学 | 215篇 |
海洋学 | 65篇 |
天文学 | 87篇 |
综合类 | 4篇 |
自然地理 | 109篇 |
出版年
2022年 | 7篇 |
2021年 | 8篇 |
2020年 | 11篇 |
2019年 | 17篇 |
2018年 | 10篇 |
2017年 | 12篇 |
2016年 | 25篇 |
2015年 | 23篇 |
2014年 | 20篇 |
2013年 | 40篇 |
2012年 | 31篇 |
2011年 | 30篇 |
2010年 | 26篇 |
2009年 | 38篇 |
2008年 | 24篇 |
2007年 | 33篇 |
2006年 | 21篇 |
2005年 | 29篇 |
2004年 | 20篇 |
2003年 | 26篇 |
2002年 | 26篇 |
2001年 | 25篇 |
2000年 | 18篇 |
1999年 | 15篇 |
1998年 | 20篇 |
1997年 | 7篇 |
1996年 | 8篇 |
1995年 | 7篇 |
1994年 | 8篇 |
1993年 | 4篇 |
1992年 | 12篇 |
1991年 | 7篇 |
1990年 | 4篇 |
1989年 | 7篇 |
1988年 | 3篇 |
1987年 | 8篇 |
1986年 | 9篇 |
1985年 | 4篇 |
1984年 | 11篇 |
1983年 | 8篇 |
1982年 | 9篇 |
1981年 | 8篇 |
1980年 | 6篇 |
1979年 | 10篇 |
1978年 | 2篇 |
1977年 | 3篇 |
1976年 | 4篇 |
1973年 | 8篇 |
1970年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有718条查询结果,搜索用时 15 毫秒
91.
92.
Iain M. Suthers Jock W. YoungMark E. Baird Moninya RoughanJason D. Everett Gary B. BrassingtonMaria Byrne Scott A. CondieJason R. Hartog Christel S. HasslerAlistair J. Hobday Neil J. HolbrookHamish A. Malcolm Peter R. OkePeter A. Thompson Ken Ridgway 《Deep Sea Research Part II: Topical Studies in Oceanography》2011,58(5):538-546
The poleward flowing East Australian Current (EAC) is characterised by its separation from the coast, 100-200 nautical miles north of Sydney, to form the eastward flowing Tasman Front and a southward flowing eddy field. The separation zone greatly influences coastal ecosystems for the relatively narrow continental shelf (only 15-50 km wide), particularly between 32-34°S. In this region the continental shelf has a marked shift in the seasonal temperature-salinity relationship and elevated surface nitrate concentrations. This current parallels the portion of the coast where Australia’s population is concentrated and has a long history of scientific research. However, understanding of physical and biological processes driven by the EAC, particularly in linking circulation to ecosystems, is limited. In this special issue of 16 papers on the EAC, we examine the effects of climatic wind-stress forced ocean dynamics on EAC transport variability and coastal sea level, from ENSO to multi-decadal time scales; eddy formation and structure; fine scale connectivity and larval retention. Comparisons with the poleward-flowing Leeuwin Current on Australia’s west coast show differences in ecosystem productivity that can be attributed to the underlying physics in each region. On average there is double the chlorophyll a concentration on the east coast than the west. In comparison to the Leeuwin, the EAC may have less local retention of larvae and act as a partial barrier to onshore transport, which may also be related to the local spawning and early life history of small pelagic fish on each coast. Inter-annual variations in the EAC transport produce a detectable sea-level signal in Sydney Harbour, which could provide a useful fisheries index as does the Fremantle sea level and Leeuwin Current relationship. The EAC’s eddy structure and formation by the EAC are examined. A particular cold-core eddy is shown to have a “tilt” towards the coast, and that during a rotation the flow of particles may rise up to the euphotic zone and then down beneath. In a warm-core eddy, surface flooding is shown to produce a new shallower surface mixed layer and promote algal growth. An assessment of plankton data from 1938-1942 showed that the local, synoptic conditions had to be incorporated before any comparison with the present. There are useful relationships of water mass characteristics in the Tasman Sea and separation zone with larval fish diversity and abundance, as well as with long-line fisheries. These fisheries-pelagic habitat relationships are invaluable for fisheries management, as well as for climate change assessments.There is further need to examine the EAC influence on rainfall, storm activity, dust deposition, and on the movements by fish, sharks and whales. The Australian Integrated Marine Observing System (IMOS) has provided new infrastructure to determine the changing behaviour of the EAC and its bio-physical interaction with the coasts and estuaries. The forecasting and hindcasting capability developed under the Bluelink project has provided a new tool for data synthesis and dynamical analysis. The impact of a strengthening EAC and how it influences the livelihoods of over half the Australian population, from Brisbane to Sydney, Hobart and Melbourne, is just being realised. 相似文献
93.
Summary. The frozen flux approximation of Roberts & Scott is a constraint on the core field that can be used to aid interpretation of the very sparse datasets that palaeomagnetism and archaeomagnetism provide. It gives bounds on the size of the components of the magnetic field at a point, of the Gauss coefficients, and, if valid over such long time periods, limits the shape of the field during transitions between normal and reversed polarities. The maximum intensity at a point, consistent with the present flux, is 281 μT or 4 times the maximum field observed today. The present dipole is about 50 per cent of its upper bound. Polarity reversal is impossible if the transition field is purely axisymmetric. None of the measurements we consider violate the frozen flux approximation. 相似文献
94.
Deformation of a young salt giant: regional topography of the Red Sea Miocene evaporites 总被引:1,自引:0,他引:1 下载免费PDF全文
The deformational behaviour of ‘salt giants’ during and shortly after their deposition is difficult to decipher in ocean margin settings where the original evaporites have been deeply buried and strongly mobilized. Here, we examine seismic reflection data from the Red Sea, where evaporites deposited until the end of the Miocene (~5.3 Ma), are generally covered by only 200–300 m of low‐density sediments and where the presence of an axial spreading centre allows us to observe how they have responded to a varied configuration of underlying basement. The regional morphology of the S‐reflection, representing the evaporite surface, is mapped out from seismic data from 13 cruises. The S‐reflection is locally rugged and commonly angular. It is either underlain by layered reflectivity, suggestive of layered evaporite beds, or by more transparent seismic character, suggestive of massive halite. On average, the depth of the reflection on the flanks of the axial rift systematically declines from 700 to 1100 m below sea level (mbsl) going northwards from 16 to 23°N. In the central Red Sea, the S‐reflection has 100‐ to 200‐m‐deep depressions, extending towards the coasts in places. In the southern Red Sea, the S‐reflection forms a surface at 300–800 mbsl that appears less disrupted. We suggest that the evaporites originally had a flat, horizontal surface at the end of the Miocene and have subsequently been distorted by isostatic effects and axial rifting, which in turn promoted evaporite flowage. Off‐axis evaporite depressions correspond with flows identified with multibeam sonar. Furthermore, across‐rift lows in Bouguer gravity anomalies represent valleys in the underlying basement. The off‐axis evaporite depressions overlie those valleys, as would be expected if halokinetic movements were greatest where the evaporites are locally thick, leading to deflation of the evaporite surface. The thickness of post‐Miocene sediment, also mapped out as part of this procedure, confirms the generally pelagic nature of this interval and increases on average from ~250 to 300 m from the central to the southern Red Sea, mimicking the variation in pelagic productivity observed in the present water column. 相似文献
95.
96.
97.
98.
An 18 million year record of the Ca isotopic composition (δ44/42Ca) of planktonic foraminiferans from ODP site 925, in the Atlantic, on the Ceara Rise, provides the opportunity for critical analysis of Ca isotope-based reconstructions of the Ca cycle. δ44/42Ca in this record averages +0.37 ± 0.05 (1σ SD) and ranges from +0.21‰ to +0.52‰. The record is a good match to previously published Neogene Ca isotope records based on foraminiferans, but is not similar to the record based on bulk carbonates, which has values that are as much as 0.25‰ lower. Bulk carbonate and planktonic foraminiferans from core tops differ slightly in their δ44/42Ca (i.e., by 0.06 ± 0.06‰ (n = 5)), while the difference between bulk carbonate and foraminiferan values further back in time is markedly larger, leaving open the question of the cause of the difference. Modeling the global Ca cycle from downcore variations in δ44/42Ca by assuming fixed values for the isotopic composition of weathering inputs (δ44/42Caw) and for isotope fractionation associated with the production of carbonate sediments (Δsed) results in unrealistically large variations in the total mass of Ca2+ in the oceans over the Neogene. Alternatively, variations of ±0.05‰ in the Ca isotope composition of weathering inputs or in the extent of fractionation of Ca isotopes during calcareous sediment formation could entirely account for variations in the Ca isotopic composition of marine carbonates. Ca isotope fractionation during continental weathering, such as has been recently observed, could easily result in variations in δ44/42Caw of a few tenths of permil. Likewise a difference in the fractionation factors associated with aragonite versus calcite formation could drive shifts in Δsed of tenths of permil with shifts in the relative output of calcite and aragonite from the ocean. Until better constraints on variations in δ44/42Caw and Δsed have been established, modeling the Ca2+ content of seawater from Ca isotope curves should be approached cautiously. 相似文献
99.
An integrated assessment is presented of the potential impacts of the cattle tick (Boophilus microplus Canestrini) on the Australian beefindustry under climate change. The project was carried out as a case study to test an impact assessment approach that was designed to integrate biological, production and socio-economic impacts on managed and natural systems. A climate-driven, tick population model was run for European, zebu and crossbred cattle breeds having different levels of resistance to cattle ticks. A geographical information system (GIS) was used to organise spatial data on climate scenarios and industry statistics and to undertake regional analyses.A comparison was made of the two available approaches to conducting impact assessments, namely a bottom-up approach using sensitivity analysis and a top-down approach using climate change scenarios from a global circulation model (GCM) (CSIRO, 1996). The output, in terms of the abundance of tick populations and reductions in cattle productivity for each breed showed significant expansions in potential geographical impacts. In the absence of any adaptation measures, the results indicated changes in the losses in live weight gain of cattle tick ranging from 7780 tonnes per year by 2030 to 21637 tonnes per year by 2100, in comparison with estimates for current losses of 6594 tonnes per year.The principal adaptation options available to the beef industry are to switch to breeds that are more resistant to cattle ticks, or to increase the frequency of treatments with various tick control products. In this paper we focus on switching breeds as an adaptive measure when appropriate damage thresholds are triggered under the climate change scenarios. When adaptation measures were put in place, the losses ranged from 4962 tonnes in 2030 to 5619 tonnes in 2100 compared with 2636 tonnes at present if all producers adopted the optimal breed structure. Optimal breed structure was defined as one that would prevent tick numbers per animal exceeding 100 ticks per animal for European and 700 ticks per animal for crossbred breeds of cattle in any week of the year under a tick control strategy that was suitable for present climatic conditions. The lower threshold for European breeds reflects their vulnerability to explosive increases in numbers because of their low resistance to ticks. The results of the analyses using the GCM scenarios were used in an economic model to calculate costs of lost live-weight gain for 2030, 2070 and 2100. The greatest increases in costs were incurred in the southern parts of the current distribution in Queensland and potentially in northern New South Wales if the present quarantine barrier failed.Given the great uncertainty of the nature of possible regional changes in climate, analyses of the sensitivity of losses in live weight gain to changes in climatic variables were also undertaken. The analyses included a measure of likely impacts of cattle tick on the beef cattle industry, in the absence of adaptation measures, as a baseline measure of sensitivity. The likely impacts on crossbred cattle were insensitive to the climatic variables.When adaptive breed changes were allowed, the economic impacts on the industry were insensitive to the GCM scenarios. This suggests that, at least in this instance, reducing the uncertainties in climate change scenarios is not a priority if the adaptation strategies can be implemented in a cost-effective manner. Finally we made a qualitative assessment of the sustainability and robustness of alternative approaches to adaptation and assessed regional vulnerability to cattle tick under climate change. The conclusions were so strongly dependent on assumptions about the future of other global changes, in particular the ability to maintain quarantine barriers and to retain effective acaricides at comparable costs to the present, that we strongly recommend that risk assessments of climate change extend to all relevant variables in involved in global change where possible. 相似文献
100.
Neil F. Glasser Stephan Harrison 《Geografiska Annaler: Series A, Physical Geography》2005,87(3):421-430
Whalebacks are convex landforms created by the smoothing of bedrock by glacial processes. Their formation is attributed to glacial abrasion either by bodies of subglacial sediment sliding over bedrock or by individual clasts contained within ice. This paper reports field measurements of sediment depth around two whaleback landforms in order to investigate the relationship between glacigenic deposits and whaleback formation. The study site, at Lago Tranquilo in Chilean Patagonia, is situated within the Last Glacial Maximum (LGM) ice limits. The two whalebacks are separated by intervening depressions in which sediment depths are generally 0.2 to 0.3 m. Two facies occur on and around the whalebacks. These facies are: (1) angular gravel found only on the surface of the whalebacks, interpreted as bedrock fracturing in response to unloading of the rock following pressure release after ice recession, and (2) sandy boulder‐gravel in the sediment‐filled depressions between the two whalebacks, interpreted as an ice‐marginal deposit, with a mixture of sediment types including basal glacial and glaciofluvial sediment. Since the whalebacks have heavily abraded and striated surfaces but are surrounded by only a patchy and discontinuous layer of sediment, the implication is that surface abrasion of the whalebacks was achieved primarily by clasts entrained in basal ice, not by subglacial till sliding. 相似文献