Sediment samples collected in the Moradabad area, lying in the interfluve of the Ganga and Ramganga Rivers, were analysed for heavy metals, after studying the geomorphology of the area. Geomorphologically, the area can be divided into three terraces - the T0, T1 and T2 surfaces. The rivers on these three surfaces show varying amounts of pollution depending upon the input from industries and urban settlements. The Ramganga River on the T0 surface shows the highest amount of pollution. However, the pollution levels in all these rivers show a downstream dilution effect. The characteristic feature of the vast interfluve area (T2 surface) is the presence of several, independent basins which are closed and rarely interact with each other or with any river. The sediments are redistributed and redeposited within the basin itself, and thus these basins serve as sinks. The sediments of one such basin in the study area show significant concentrations of arsenic, chromium, copper, nickel, lead, zinc and organic carbon. The concentrations of heavy metals in such a basin will show exponential increases with time, because there is no activity to funnel out the sediments and dilute the effect of pollution. This increase will pose more threats, as ultimately it will make its way laterally and vertically through the sediments, thereby polluting groundwater. 相似文献
Identification of seismic events from continuously recorded seismic data in real-time through a Digital Seismic Data Recording
system is a difficult task. Despite the vast amount of research in this field, the signal processing and event parameters
discrimination algorithms have not yet fully come of age. Presently, we have a wide spectrum of trigger algorithms, ranging
from a very simple amplitude threshold type to the sophisticated ones based on pattern recognition approaches. Some of the
other approaches use adaptive technique and neural network methods. Researchers are continuously making efforts for the development
of algorithms using various techniques, which produce minimum false trigger. Some approaches have been reported which are
accurate for detecting first phase of events and take minimum possible computational time. In this paper several approaches
for detecting event signals in background noise are presented and their precision evaluation is discussed. 相似文献
Origin-destination flow maps are often difficult to read due to overlapping flows. Cartographers have developed design principles in manual cartography for origin-destination flow maps to reduce overlaps and increase readability. These design principles are identified and documented using a quantitative content analysis of 97 geographic origin-destination flow maps without branching or merging flows. The effectiveness of selected design principles is verified in a user study with 215 participants. Findings show that (a) curved flows are more effective than straight flows, (b) arrows indicate direction more effectively than tapered line widths, and (c) flows between nodes are more effective than flows between areas. These findings, combined with results from user studies in graph drawing, conclude that effective and efficient origin-destination flow maps should be designed according to the following design principles: overlaps between flows are minimized; symmetric flows are preferred to asymmetric flows; longer flows are curved more than shorter or peripheral flows; acute angles between crossing flows are avoided; sharp bends in flow lines are avoided; flows do not pass under unconnected nodes; flows are radially distributed around nodes; flow direction is indicated with arrowheads; and flow width is scaled with represented quantity. 相似文献
India's growing role in the global climate debate makes it imperative to analyse emission reduction policies and strategies across a range of GHGs, especially for under-researched non-CO2 gases. Hydrofluorocarbons' (HFCs) usage in cooling equipment and subsequent emissions are expected to increase dramatically in India with the phase-out of hydrochlorofluorocarbons (HCFCs) as coolants in air-conditioning equipment. We focus on the residential air-conditioning sector in India and analyse a suite of HFC and alternative coolant gas scenarios for understanding the implications for GHG emissions from this sector within an integrated assessment modelling framework. We find that, if unabated, HFC410A emissions will contribute to 36% of the total global warming impact from the residential air-conditioner sector in India in 2050, irrespective of the future economic growth trajectory, and the remaining 64% is from energy to power residential air-conditioners. A move towards more efficient, low global warming potential (GWP) alternative refrigerants will significantly reduce the cumulative global warming footprint of this sector by 37% during the period 2010–2050, due to gains both from energy efficiency as well as low GWP alternatives. Best practices for reducing direct emissions are important, but only of limited utility, and if a sustainable lifestyle is adopted by consumers with lower floorspace, low GWP refrigerants, and higher building envelope efficiencies, cumulative emissions during 2010–2050 can be reduced by 46% compared to the Reference scenario.
Policy relevance
Our analysis has important implications for Indian climate policy. We highlight that the Indian government's amendment proposal to the Montreal Protocol is a strong signal to the Indian market that the transition away from high GWP refrigerants towards low/zero GWP alternatives will happen sooner or later. The Bureau of Energy Efficiency should extend building energy conservation code policy to residential buildings immediately, and the government should mandate it. Government authorities should set guidelines and mandate reporting of data related to air-conditioner coolant recharge frequency and recovery of scrapped air-conditioner units. For contentious issues like flammability where there is no consensus within the industry, the government needs to undertake an independent technical assessment that can provide unbiased and reliable information to the market. 相似文献
Climate Dynamics - Regional climate models (RCM) are an important tool for simulating atmospheric information at finer resolutions often of greater relevance to local scale climate change impact... 相似文献
Dispersion of Rayleigh-type surface wave is studied in a homogeneous transversely isotropic elastic layer overlying a nondissipative liquid-saturated porous solid half-space and lying under a uniform layer of homogeneous liquid. The frequency equation in the form of ninth-order determinant is obtained.Special cases have been deduced by reducing the depth of the layers to zero and by changing the transverse isotropic layer to an isotropic layer. Dispersion curves for the phase velocity have been plotted for a particular model. 相似文献
Climate change is expected to have severe impacts on global hydrological cycle along with food-water-energy nexus. Currently, there are many climate models used in predicting important climatic variables. Though there have been advances in the field, there are still many problems to be resolved related to reliability, uncertainty, and computing needs, among many others. In the present work, we have analyzed performance of 20 different global climate models (GCMs) from Climate Model Intercomparison Project Phase 5 (CMIP5) dataset over the Columbia River Basin (CRB) in the Pacific Northwest USA. We demonstrate a statistical multicriteria approach, using univariate and multivariate techniques, for selecting suitable GCMs to be used for climate change impact analysis in the region. Univariate methods includes mean, standard deviation, coefficient of variation, relative change (variability), Mann-Kendall test, and Kolmogorov-Smirnov test (KS-test); whereas multivariate methods used were principal component analysis (PCA), singular value decomposition (SVD), canonical correlation analysis (CCA), and cluster analysis. The analysis is performed on raw GCM data, i.e., before bias correction, for precipitation and temperature climatic variables for all the 20 models to capture the reliability and nature of the particular model at regional scale. The analysis is based on spatially averaged datasets of GCMs and observation for the period of 1970 to 2000. Ranking is provided to each of the GCMs based on the performance evaluated against gridded observational data on various temporal scales (daily, monthly, and seasonal). Results have provided insight into each of the methods and various statistical properties addressed by them employed in ranking GCMs. Further; evaluation was also performed for raw GCM simulations against different sets of gridded observational dataset in the area. 相似文献
Sea surface winds from the Oceansat-2 scatterometer (OSCAT) are important inputs to Numerical Weather Prediction (NWP) models. The Indian Space Research Organization (ISRO) recently updated the OSCAT retrieval algorithm in order to generate better products. An attempt has been made in this study to evaluate the updated OSCAT winds using buoy observations and the 6-hour short-term forecasts from the T574L64 model from the National Centre for Medium Range Weather Forecasting (NCMRWF) during the 2011 monsoon. The results of the OSCAT evaluation are also compared with those from the Advanced Scatterometer (ASCAT) on-board the Meteorological Operational Satellite-A (MetOp-A) which were evaluated in the same way. The root mean square differences (RMSDs) for wind speed and direction, are within 2?m?s?1 and 20° for both scatterometers. The RMSDs for OSCAT are slightly higher than those for ASCAT, and this difference may be attributed in part to the difference in frequency and resolution of the scatterometer payloads. The bias and standard deviation for ASCAT winds are also lower than those for OSCAT winds with respect to the model short-range forecast, and this can be attributed to the regular assimilation of ASCAT winds in the model. 相似文献
This study presents the chemical composition (carbonaceous and nitrogenous components) of aerosols (PM2.5 and PM10) along with stable isotopic composition (δ13C and δ15N) collected during winter and the summer months of 2015–16 to explore the possible sources of aerosols in megacity Delhi, India. The mean concentrations (mean?±?standard deviation at 1σ) of PM2.5 and PM10 were 223?±?69 µg m?3 and 328?±?65 µg m?3, respectively during winter season whereas the mean concentrations of PM2.5 and PM10 were 147?±?22 µg m?3 and 236?±?61 µg m?3, respectively during summer season. The mean value of δ13C (range: ??26.4 to ??23.4‰) and δ15N (range: 3.3 to 14.4‰) of PM2.5 were ??25.3?±?0.5‰ and 8.9?±?2.1‰, respectively during winter season whereas the mean value of δ13C (range: ??26.7 to ??25.3‰) and δ15N (range: 2.8 to 11.5‰) of PM2.5 were ??26.1?±?0.4‰ and 6.4?±?2.5‰, respectively during the summer season. Comparison of stable C and N isotopic fingerprints of major identical sources suggested that major portion of PM2.5 and PM10 at Delhi were mainly from fossil fuel combustion (FFC), biomass burning (BB) (C-3 and C-4 type vegitation), secondary aerosols (SAs) and road dust (SD). The correlation analysis of δ13C with other C (OC, TC, OC/EC and OC/WSOC) components and δ15N with other N components (TN, NH4+ and NO3?) are also support the source identification of isotopic signatures.