首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   7篇
  国内免费   2篇
测绘学   2篇
大气科学   15篇
地球物理   37篇
地质学   71篇
海洋学   1篇
天文学   10篇
综合类   11篇
自然地理   3篇
  2024年   5篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   5篇
  2018年   18篇
  2017年   14篇
  2016年   13篇
  2015年   10篇
  2014年   17篇
  2013年   12篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2006年   6篇
  2005年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
21.
22.
The Carnian Pluvial Episode (CPE) fingerprints global environmental perturbations and biological extinction on land and oceans and is potentially linked to the Wrangellia Large Igneous Province (LIP). However, the correlation between terrestrial environmental changes and Wrangellia volcanism in the Ordos Basin during the CPE remains poorly understood. Records of negative carbon isotopic excursions (NCIEs), mercury (Hg), Hg/TOC, and Hg enrichment factor (HgEF) from oil shales in a large-scale terrestrial Ordos Basin in the Eastern Tethys were correlated with marine and other terrestrial successions. The three significant NCIEs in the study section were consistently correlated with those in the CPE successions of Europe, the UK, and South and North China. The U-Pb geochronology indicates a Ladinian–Carnian age for the Chang 7 Member. A comprehensive overview of the geochronology, NCIE correlation, and previous bio- and chronostratigraphic frameworks shows that the Ladinian–Carnian boundary is located in the lower part of Chang 7 in the Yishicun section. HgEF may be a more reliable proxy for tracing volcanic eruptions than the Hg/TOC ratio because the accumulation rates of TOC content largely vary in terrestrial and marine successions. The records of Hg, Hg/TOC, HgEF, and NCIEs in the Ordos Basin aligned with Carnian successions worldwide and were marked by similar anomalies, indicating a global response to the Wrangellia LIP during the CPE. Anoxia, a warm-humid climate, enhancement of detrital input, and NCIEs are synchronous with the CPE interval in the Ordos Basin, which suggests that the CPE combined with the regional Qinling Orogeny should dominate the enhanced rate of terrigenous input and paleoenvironmental evolution in the Ordos Basin.  相似文献   
23.
Different techniques have been used to discuss the existence of significant relation between the El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). Various studies present their interaction and influence on the natural disasters (i.e. drought, flood, etc.) over large parts of the globe. This study uses a Markov chain method to investigate the relation between the ENSO and IOD for the period of 62 years (1950–2011) and aggregates their influence on the occurrence of floods in Pakistan. Both data sets show similarities in the formation of transition matrices and expected number of visits from one state to another. The strong values of 2-dimensional correlation and high self-communication of the transition states confirm the existence of a possible relation between ENSO and IOD data. Moreover, significant values of dependency and stationary test endorse the applicability of the Markov chain analyses. The independent analysis shows that strong events of both data sets are co-occurred in the same flood years. During the study period maximum number of floods was observed during summer monsoon season. However, further analysis shows that after 1970, Pakistan observed the highest percentage of floods occurred per year during El Nino, Non-ENSO and positive IOD years. These observations and results demonstrate that climate variability especially ENSO and IOD should be incorporated into disaster risk analyses and policies in Pakistan.  相似文献   
24.
    
The Pleistocene represents the youngest period of repeated widespread glaciation and interglacial intervals of both hemispheres. The Pleistocene–Holocene siliciclastics of the Peshawar Basin preserve a significant terrestrial record of palaeoclimatic fluctuations during this glacial time interval in northwest Pakistan at latitudes of 33–35°N. The sedimentological evidences indicate that the lower part of the stratal package consists of floodplain clay cycles overlain by lacustrine-glaciofluvial rhythmites, that are followed by loess deposits and finally recent floodplain clays. The geochemical proxies demonstrate an overall cold-arid climate with very low intensity of chemical weathering, whereas the clay mineralogy and related indices suggest intensifying physical erosion. The chemical index of alteration (CIA) reflects comparatively slightly higher (but still very low) intensity of chemical weathering for the lowermost part of the succession and uppermost loess deposits. The illite-rich clay mineralogy of these two lithofacies associations also indicates the prevailing cold-arid palaeoclimate. The low CIA and smectite-rich clay mineralogy of the rhythmites, on the other hand, reflect deposition in poorly drained lakes. Multiple evidences for break-out floods and the presence of ice-rafted debris (IRD) within the rhythmites provide conclusive evidences for ice damming in the Peshawar Basin and drainage blockage due to the uplift of the Attock–Cherat Range. The floodplain clays indicate deposition in an interglacial semiarid–semihumid palaeoclimate preceding the Shanoz stage glaciation. The rhythmites correlate with the Shanoz, Yunz, and Borit Jheel glacial stages. The loess deposits indicate aeolian deposition in a cold, periglacial environment spanning over the late glacial maximum (LGM) interval.  相似文献   
25.
Irrigation-induced landslide is a recurring problem in the Heifangtai loess platform of northwest China. The landslide sites are characterized by a concave topography. Numerical modeling indicates that the groundwater table at the past-landslide site rises more quickly than the other natural platform borders under irrigation conditions. This is consistent with the field observations that seepage of the groundwater appeared in the hollow is higher than that of lateral slopes. In order to investigate the response of soil behavior due to rise in groundwater table, stress-path tests were performed on undisturbed specimens. It has been observed that the increase in pore water pressure in loess can trigger soil liquefaction and eventually results in landslide. Hence, the concave past-landslide site is much more prone to landsliding, which contributed to the landslide recurrence.  相似文献   
26.
The project area lies in the southern part of the Hazara Kashmir syntaxis. The Hazara Kashmir syntaxis is an antiformal structure. The project area includes Rumbli, Namb, Chatrora, Chachan, Panjar, Barathian and Utrinna areas of Rawalpindi and Sudhnoti districts. The southeastern limb of the Hazara Kashmir syntaxis is imbricated along Punjal thrust, Main Boundary thrust and Riasi fault. The Jhelum fault truncates the western limb of Hazara Kashmir syntaxis. The core of syntaxis comprises of Himalayan molasse deposits. These molasse deposits represent the part of cover sequence of Indian plate. These Himalayan molasse deposits include the Early to Middle Miocene Kamlial Formation, Middle to Late Miocene Chinji Formation, Late Miocene Nagri Formation and Late Miocene Dhok Pathan Formation. The area is highly deformed resulting folds and faults. The major folds in the project area are the Panjar anticline, Barathian syncline, Barathian anticline, Rumbli anticline, Chatrora antiformal syncline and Namb syncline. The folds are either northwest-southeast trending or southwestnortheast trending. The folds are asymmetric, open, and gentle and close in nature. The folds are southwest, northeast or southeast vergent. The Jhelum fault truncates the northeast and northwest trending structures. The folds and faults are the result of northeastsouthwest or northwest-southeast Himalayan compression.  相似文献   
27.
The intermontane Karewa basin contains a wide variety of seismically induced soft sediment deformation structures, interpreted as seismites and occurs in 1300 m thick succession of upper and lower Karewas. The Karewa Formation of Kashmir valley are glacio- fluvial-lacustrine and aeolian loess of Plio-Pleistocene age. The soft sediment deformational structures occurs in various formations and members of Karewas and vary greatly in terms of morphology and pattern. The Karewa Formations were frequently confronted with recurrent seismic activities during differential upliftment of Pir Panjal and Zanaskar ranges which resulted in various deformation structures during their evolution and development. In the present study, an attempt has been made to relate the palaeo-seismicity events in Karewa formations with the deformed structures of various formations. The origin of these deformational structures have been interpreted and analyzed from the field evidences by applying paleo-seismological approach. During and after the deposition of Karewas different soft sediment deformation structures (seismites) like load cast, convolute lamination, pseudonodules, recumbent folds, sand dykes etc. were formed during liquefaction and triggered by tectonic impulsive events. The deformational structures are evidenced by their unique nature, distribution, association, behaviour and deformation, and can be used as vital indicators for palaeo-seismicity.  相似文献   
28.
    
International Journal of Earth Sciences - Regional seismic reflection profiles, deep exploratory wells, and outcrop data have been used to study the structure and stratigraphic architecture of the...  相似文献   
29.
Several studies demonstrate that North Atlantic Oscillation (NAO) has dominant influence on the variability of climate over Southwest Asia. We deconstruct the NAO into its two components, the Azores High and the Icelandic Low. Regional circulations are influenced by changes not only in the pressure but also the positions of the Azores High and the Icelandic Low. The results presented in this paper exhibit that significantly great portions of interannual variance of winter precipitation over Indo-Pak Region (consists of Northeast Pakistan and Northwest India) can be explained by including the contributions of the Icelandic Low pressure in addition to ENSO and AO. This contribution also explains the physical mechanisms to establish the relationships between the COA and regional climate by examining composite maps of large-scale circulation fields using NCEP/NCAR reanalysis data.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号