全文获取类型
收费全文 | 126篇 |
免费 | 7篇 |
专业分类
测绘学 | 7篇 |
大气科学 | 14篇 |
地球物理 | 24篇 |
地质学 | 44篇 |
海洋学 | 17篇 |
天文学 | 15篇 |
综合类 | 1篇 |
自然地理 | 11篇 |
出版年
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 3篇 |
2019年 | 2篇 |
2018年 | 3篇 |
2017年 | 1篇 |
2016年 | 10篇 |
2015年 | 4篇 |
2014年 | 5篇 |
2013年 | 12篇 |
2012年 | 11篇 |
2011年 | 7篇 |
2010年 | 10篇 |
2009年 | 3篇 |
2008年 | 7篇 |
2007年 | 6篇 |
2006年 | 5篇 |
2005年 | 2篇 |
2004年 | 5篇 |
2003年 | 3篇 |
2002年 | 5篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1985年 | 4篇 |
1984年 | 1篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有133条查询结果,搜索用时 15 毫秒
121.
Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m−2 K−1 s−1/2) diurnal and seasonal variations in apparent thermal inertia even for small (∼10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface. 相似文献
122.
Morgenthaler Jeffrey P. Harris Walter M. Roesler Frederick L. Scherb Frank Anderson Christopher M. Doane Nathaniel E. Oliversen Ronald J. 《Earth, Moon, and Planets》2002,90(1-4):77-87
The University of Wisconsin–Madison and NASA–Goddard conducted acomprehensive multi-wavelength observing campaign of coma emissionsfrom comet Hale–Bopp, including OH 3080 Å, [O I] 6300 Å H2O+ 6158 Å, H Balmer-α 6563 Å, NH2 6330 Å, [C I] 9850 ÅCN 3879 Å, C2 5141 Å, C3 4062 Å,C I 1657 Å, and the UV and optical continua. In thiswork, we concentrate on the results of the H2O daughter studies.Our wide-field OH 3080 Å measured flux agrees with other, similarobservations and the expected value calculated from published waterproduction rates using standard H2O and OH photochemistry.However, the total [O I] 6300 Å flux determined spectroscopically overa similar field-of-view was a factor of 3-4 higher than expected.Narrow-band [O I] images show this excess came from beyond theH2O scale length, suggesting either a previously unknown source of[O I] or an error in the standard OH + ν→ O(1 D) + H branching ratio. The Hale–Bopp OH and[O I] distributions, both of which were imaged tocometocentric distances >1 × 106 km, were more spatiallyextended than those of comet Halley (after correcting for brightnessdifferences), suggesting a higher bulk outflow velocity. Evidence ofthe driving mechanism for this outflow is found in the Hα lineprofile, which was narrower than in comet Halley (though likelybecause of opacity effects, not as narrow as predicted by Monte-Carlomodels). This is consistent with greater collisional coupling betweenthe suprathermal H photodissociation products and Hale–Bopp's densecoma. Presumably because of mass loading of the solar wind by ionsand ions by the neutrals, the measured acceleration of H2O+ downthe ion tail was much smaller than in comet Halley. Tailwardextensions in the azimuthal distributions of OH 3080 Å,[O I], and [C I] , as well as a Doppler asymmetry in the[O I] line profile, suggest ion-neutral coupling. While thetailward extension in the OH can be explained by increased neutralacceleration, the [O I] 6300 Å and [C I] 9850 Å emissions show 13%and >200% excesses in this direction (respectively), suggesting anon-negligible contribution from dissociative recombination of CO+and/or electron collisional excitation. Thus, models including theeffects of photo- and collisional chemistry are necessary for the fullinterpretation of these data. 相似文献
123.
S. V. Kalenskiĭ V. G. Promyslov V. I. Slysh P. Bergman A. Winnberg 《Astronomy Reports》2006,50(4):289-297
Six young bipolar outflows in regions of low-intermediate-mass star formation were observed in the 70-61
A
+, 80-71
A
+, and 5−1-40
E methanol lines at 44, 95, and 84 GHz, respectively. Narrow features were detected towards NGC 1333-IRS4A, HH 25MMS, and L1157-B1.
The flux densities of the detected lines are not higher than 11 Jy, which is much lower than the flux densities of strong
maser lines in regions of high-mass star formation. Analysis shows that the narrow features are most likely masers.
Published in Russian in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 4, pp. 327–336.
This text was submitted by the authors in English. 相似文献
124.
125.
Double-couple point-source parameters for 11 of the largest intraplate earthquakes in the northern Indian Ocean during the last 20 y were determined from a formal inversion of long-period P and SH waveforms. Nine of the events have centroid depths at least 17 km below the seafloor, well into the upper mantle; two have centroid depths as great as 39 km. Using the source mechanisms of these earthquakes, we distinguish two major intraplate tectonic provinces in the northern Indian Ocean. To the west of the Ninetyeast Ridge, in the southern Bay of Bengal, intraplate earthquakes have thrust-faulting mechanisms with P axes oriented N-S. The centroid depths of these earthquakes range from 27 to 39 km below the seafloor. Lithospheric shortening in this region is thus accomplished by thrust faulting in the strong core of the oceanic upper mantle, while other geophysical evidence suggests that shallow sedimentary and crustal layers apparently deform predominantly by folding. In the immediate vicinity of the Ninetyeast Ridge, earthquakes display strike-slip mechanisms with left-lateral motion on planes parallel to the ridge. This type of faulting occurs from at least 10°S to the northern end of the Ninetyeast Ridge near 10°N, where the ridge meets the Sunda Arc. Seismic activity diminishes to the east of the Ninetyeast Ridge, but is also characterized by strike-slip faulting. Despite these variations in deformational style, the inferred orientation of greatest compressive stress in the northern Indian Ocean displays a consistent long-wavelength pattern over a large portion of the Indian plate, varying smoothly from nearly N-S in the Bay of Bengal to NW-SE in the northeastern Indian Ocean. This plate-wide stress pattern and the high level of intraplate seismicity in the northern Indian Ocean are likely the results of substantial resistance, along the Himalayan continental collision zone, to the continued northward motion of the western portion of the Indian plate. Oceanic intraplate earthquakes in other regions, where the level of deviatoric stress associated with the long-wavelength part of the stress field is likely to be smaller, need not be comparably reliable indicators of the plate-wide stress field. 相似文献
126.
Land surface spatial heterogeneity plays a significant role in the water, energy, and carbon cycles over a range of temporal and spatial scales. Until now, the representation of this spatial heterogeneity in land surface models has been limited to over simplistic schemes because of computation and environmental data limitations. This study introduces HydroBlocks – a novel land surface model that represents field‐scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs). HydroBlocks is a coupling between the Noah‐MP land surface model and the Dynamic TOPMODEL hydrologic model. The HRUs are defined by clustering proxies of the drivers of spatial heterogeneity using high‐resolution land data. The clustering mechanism allows for each HRU's results to be mapped out in space, facilitating field‐scale application and validation. The Little Washita watershed in the USA is used to assess HydroBlocks' performance and added benefit from traditional land surface models. A comparison between the semi‐distributed and fully distributed versions of the model suggests that using 1000 HRUs is sufficient to accurately approximate the fully distributed solution. A preliminary evaluation of model performance using available in situ soil moisture observations suggests that HydroBlocks is generally able to reproduce the observed spatial and temporal dynamics of soil moisture. Model performance deficiencies can be primarily attributed to parameter uncertainty. HydroBlocks' ability to explicitly resolve field‐scale spatial heterogeneity while only requiring an increase in computation of one to two orders of magnitude when compared with existing land surface models is encouraging – ensemble field‐scale land surface modelling over continental extents is now possible. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
127.
128.
Robert Barouki Manolis Kogevinas Karine Audouze Kristine Belesova Ake Bergman Linda Birnbaum Sandra Boekhold Sebastien Denys Celine Desseille Elina Drakvik Howard Frumkin Jeanne Garric Delphine Destoumieux-Garzon Andrew Haines Anke Huss Genon Jensen Spyros Karakitsios Jana Klanova Iida-Maria Koskela Francine Laden Paolo Vineis 《Chemie der Erde / Geochemistry》2011
The outbreak of COVID-19 raised numerous questions on the interactions between the occurrence of new infections, the environment, climate and health. The European Union requested the H2020 HERA project which aims at setting priorities in research on environment, climate and health, to identify relevant research needs regarding Covid-19. The emergence and spread of SARS-CoV-2 appears to be related to urbanization, habitat destruction, live animal trade, intensive livestock farming and global travel. The contribution of climate and air pollution requires additional studies. Importantly, the severity of COVID-19 depends on the interactions between the viral infection, ageing and chronic diseases such as metabolic, respiratory and cardiovascular diseases and obesity which are themselves influenced by environmental stressors. The mechanisms of these interactions deserve additional scrutiny. Both the pandemic and the social response to the disease have elicited an array of behavioural and societal changes that may remain long after the pandemic and that may have long term health effects including on mental health. Recovery plans are currently being discussed or implemented and the environmental and health impacts of those plans are not clearly foreseen. Clearly, COVID-19 will have a long-lasting impact on the environmental health field and will open new research perspectives and policy needs. 相似文献
129.
Jonas Bergman Stefan Wastegrd Dan Hammarlund Barbara Wohlfarth Stephen J. Roberts 《第四纪科学杂志》2004,19(3):241-249
This paper presents one of the most extensive Holocene tephra records found to date in Scandinavia. Microtephra horizons originating from Icelandic eruptions were recorded in two ca. 2 m thick peat profiles at Klocka Bog in west‐central Sweden. Five of the microtephra horizons were geochemically correlated to the Askja‐1875, Hekla‐3, Kebister, Hekla‐4 and Lairg A tephras respectively. Radiocarbon‐based dating of these tephras broadly agree with previously published ages from Iceland, Sweden, Germany and the British Isles. The identification of the Lairg A tephra demonstrates a more widespread distribution than previously thought, extending the usefulness of Icelandic Holocene tephrochronology further north into west‐central Scandinavia. Long‐lasting snow cover and seasonal wind distribution in the lower stratosphere are suggested as factors that may be responsible for fragmentary tephra deposition patterns in peat deposits of subarctic Scandinavia. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
130.
Marie Abboud-Abi Saab Jean-Claude Romano Nathaniel Bensoussan Milad Fakhri 《Comptes Rendus Geoscience》2004,336(15):1379-1390
Vertical temperature profiles were recorded from June 1999 to October 2002 (at least once a month) at two Mediterranean sites, in the eastern basin (Batroun, Lebanon; 0–100 m) and in the northwestern basin (Marseilles, France; 0–55 m). At the two sites, the thermal seasonal evolution and the thermocline time dynamics are quite identical. But in the Lebanese waters, at comparable water depths, temperatures are currently 4 to 5?°C higher than in the French waters, the thermocline is longer (more than 6 months), permanent and deeper (40–50 m) than in Marseilles (20–30 m). The latter frequently disappears in summer due to northwest winds inducing cold waters. This is principally due to differences in prevailing wind regimes at each site. Such evaluation, coupled with long-term observations of temporal evolution of coastal water at the regional level of the Mediterranean basins, will shed light on temperature regime fluctuations and their consequences in the context of global warming of the Mediterranean. To cite this article: M. Abboud-Abi Saab et al., C. R. Geoscience 336 (2004). 相似文献