首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   14篇
  国内免费   2篇
测绘学   3篇
大气科学   35篇
地球物理   68篇
地质学   93篇
海洋学   23篇
天文学   37篇
综合类   3篇
自然地理   32篇
  2024年   1篇
  2022年   4篇
  2021年   3篇
  2020年   9篇
  2019年   10篇
  2018年   16篇
  2017年   7篇
  2016年   12篇
  2015年   15篇
  2014年   11篇
  2013年   31篇
  2012年   19篇
  2011年   18篇
  2010年   17篇
  2009年   15篇
  2008年   11篇
  2007年   12篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   7篇
  2002年   11篇
  2001年   1篇
  2000年   5篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   2篇
  1985年   1篇
  1984年   4篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1966年   2篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
221.
Tracer experiments conducted in the laboratory on undisturbed core samples (<7.3-cm-diameter) have been a standard method for estimating hydraulic and transport properties of fractured till since the 1980s. This study assesses the relationship between visible fractures on the top and bottom of core samples and the resulting hydraulic and mass transport properties of the core. We hypothesized that more visible fractures would indicate the presence of a well-connected fracture network, leading to greater hydraulic conductivity (K) values and earlier chemical breakthrough times. To test this hypothesis, water flow and bromide (Br-) tracer experiments were performed on 10, 16-cm diameter, 16-cm-tall samples of fractured Dows Formation till from central Iowa. Visually identifiable fractures were present on the top and bottom of every sample. Results indicate that the visual identification of fractures does not predict a connected fracture network, as some samples produced breakthrough curves showing rapid first arrival times and shapes characteristic of solute transport in a fractured medium, while others appeared similar to an unfractured medium. No correlation was found between the number of visible fractures and K (Pearson's r = 0.25), or Br- first arrival time (r = −0.33), but a strong negative correlation between K and first arrival time (r = −0.92). Results indicate that the sample volume was not large enough to reliably contain a connected fracture network. Thus, testing large volumes of till at the field scale coupled with fracture-flow modeling likely represents the best approach for estimating hydraulic and mass transport properties for fractured till.  相似文献   
222.
223.
We summarize the results of numerical simulations of colliding gas-rich disk galaxies in which the impact velocity is set parallel to the spin axes of the two galaxies. The effects of varying the impact speed are studied with particular attention to the resulting gaseous structures and shockwave patterns, and the time needed to produce these structures. The simulations employ an N-body treatment of the stars and dark matter, together with an SPH treatment of the gas, in which all components of the models are gravitationally active. The results indicate that for such impact geometries, collisions can lead to the very rapid formation of a central, rapidly rotating, dense gas disk, and that in all cases extensive star formation is predicted by the very high gas densities and prevalence of shocks, both in the nucleus and out in the galactic disks. As the dense nucleus is forming, gas and stars are dispersed over very large volumes, and only fall back towards the nucleus over long times. In the case of low impact velocities, this takes an order of magnitude more time than that needed for the formation of a dense nucleus. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
224.
225.
226.
227.
228.
India's Sundarbans region lies within the state of West Bengal and is part of the world's largest mangrove ecosystem. Low-intensity shrimp aquaculture is present, but the potential exists for more intensive development. We argue for avoiding environmental damage and social conflict by adopting appropriate policies now. In this study, we combine ecological simulations and a choice experiment to evaluate several policy scenarios. Such comparative evaluations combining different disciplinary tools are rare. While our ecological modelling supports severe restrictions on shrimp farming activities, local stakeholders prefer a more diverse strategy. Both models indicate that large-scale commercial shrimp aquaculture is least desirable.  相似文献   
229.
Temporal and spatial patterns of variability in Puget Sound's oceanographic properties are determined using continuous vertical profile data from two long-term monitoring programs; monthly observations at 16 stations from 1993 to 2002, and biannual observations at 40 stations from 1998 to 2003. Climatological monthly means of temperature, salinity, and density reveal strong seasonal patterns. Water temperatures are generally warmest (coolest) in September (February), with stations in shallow finger inlets away from mixing zones displaying the largest temperature ranges. Salinities and densities are strongly influenced by freshwater inflows from major rivers during winter and spring from precipitation and snowmelt, respectively, and variations are greatest in the surface waters and at stations closest to river mouths. Vertical density gradients are primarily determined by salinity variations in the surface layer, with stations closest to river mouths most frequently displaying the largest buoyancy frequencies at depths of approximately 4–6 m. Strong tidal stirring and reflux over sills at the entrance to Puget Sound generally removes vertical stratification. Mean summer and winter values of oceanographic properties reveal patterns of spatial connectivity in Puget Sound's three main basins; Whidbey Basin, Hood Canal, and Main Basin. Surface waters that are warmed in the summer are vertically mixed over the sill at Admiralty Inlet and advected at depth into Whidbey Basin and Hood Canal. Cooler and fresher surface waters cap these warmer waters during winter, producing temperature inversions.  相似文献   
230.
An aggregate flux event was observed by ship and by four underwater gliders during the 2008 sub-polar North Atlantic spring bloom experiment (NAB08). At the height of the diatom bloom, aggregates were observed as spikes in measurements of both particulate backscattering coefficient (bbp) and chlorophyll a fluorescence. Optical sensors on the ship and gliders were cross-calibrated through a series of simultaneous profiles, and bbp was converted to particulate organic carbon. The aggregates sank as a discrete pulse, with an average sinking rate of ∼75 m d−1; 65% of aggregate backscattering and 90% of chlorophyll fluorescence content was lost between 100 m and 900 m. Mean aggregate organic carbon flux at 100 m in mid-May was estimated at 514 mg C m−2 d−1, consistent with independent flux estimates. The use of optical spikes observed from gliders provides unprecedented coupled vertical and temporal resolution measurements of an aggregate flux event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号