首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   13篇
  国内免费   7篇
测绘学   8篇
大气科学   16篇
地球物理   38篇
地质学   66篇
海洋学   24篇
天文学   46篇
综合类   5篇
自然地理   10篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   3篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   9篇
  2016年   17篇
  2015年   7篇
  2014年   16篇
  2013年   10篇
  2012年   13篇
  2011年   10篇
  2010年   9篇
  2009年   18篇
  2008年   8篇
  2007年   10篇
  2006年   6篇
  2005年   11篇
  2004年   2篇
  2003年   9篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1998年   3篇
  1995年   2篇
  1994年   1篇
  1973年   1篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
211.
Most of Kazakhstan belongs to the central part of the Eurasian Paleozoic mobile belts for which previously proposed tectonic scenarios have been rather disparate. Of particular interest is the origin of strongly curved Middle and Late Paleozoic volcanic belts of island-arc and Andean-arc affinities that dominate the structure of Kazakhstan. We undertook a paleomagnetic study of Carboniferous to Upper Permian volcanics and sediments from several localities in the Ili River basin between the Tien Shan and the Junggar–Alatau ranges in southeast Kazakhstan. Our main goal was to investigate the Permian kinematic evolution of these belts, particularly in terms of rotations about vertical axes, in the hope of deciphering the dynamics that played a role during the latest Paleozoic deformation in this area. This deformation, in turn, can then be related to the amalgamation of this area with Baltica, Siberia, and Tarim in the expanding Eurasian supercontinent. Thermal demagnetization revealed that most Permian rocks retained a pretilting and likely primary component, which is of reversed polarity at three localities and normal at the fourth. In contrast, most Carboniferous rocks are dominated by postfolding reversed overprints of probably “mid-Permian” age, whereas presumably primary components are isolated from a few sites at two localities. Mean inclinations of primary components generally agree with coeval reference values extrapolated from Baltica, whereas declinations from primary as well as secondary components are deflected counterclockwise (ccw) by up to  90°. Such ccw rotated directions have previously also been observed in other Tien Shan sampling areas and in the adjacent Tarim Block to the south. However, two other areas in Kazakhstan show clockwise (cw) rotations of Permian magnetization directions. One area is located in the Kendyktas block about 300 km to the west of the Ili River valley, and the other is found in the Chingiz Range, to the north of Lake Balkhash and about 400 km to the north of the Ili River valley. The timing of the ccw as well as cw rotations is clearly later than the disappearance of any marine basins from northern Tarim, the Tien Shan and eastern Kazakhstan, so that the rotations cannot be attributed to island-arc or Andean-margin plate settings — instead we attribute the rotations to large-scale, east–west (present-day coordinates), sinistral wrenching in an intracontinental setting, related to convergence between Siberia and Baltica, as recently proposed by Natal'in and Şengör [Natal'in, B.A., and Şengör, A.M.C., 2005. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: the pre-history of the palaeo-Tethyan closure, Tectonophysics, 404, 175–202.]. Our previous work in the Chingiz and North Tien Shan areas on Ordovician and Silurian rocks suggested relative rotations of  180°, whereas the Permian declination differences are of the order of 90° between the two areas. Thus, we assume that about 50% of the total post-Ordovician rotations are of pre-Late Permian age, with the other half of Late Permian–earliest Mesozoic age. The pre-Late Permian rotations are likely related to oroclinal bending during plate boundary evolution in a supra-subduction setting, given the calc-alkaline character of nearly all of the pre-Late Permian volcanics in the strongly curved belts.  相似文献   
212.
A 3-year study of the biota of the remote mountain lakes of Amut, Balan-Tamur, and Yakondykon, situated in the Dzherginsky State Reserve in the Baikalian region of Eastern Siberia, was carried out from 2006 to 2008. Examining the biota of non-modern and non-industrialised mountain lakes allowed us to reveal its background in relation to the species composition of plankton, the main groups of benthos and fishes, production potential, and seasonal dynamics of the ecosystem’s basic links. Our data on pH and biota were compared with the findings of a previous study in 1986 in order to evaluate possible changes associated with probable acidification. We observed that the lakes of the Dzherginsky State Reserve have high species diversity. Despite this, they are classed as oligotrophic water-bodies with regard to the development level of their planktonic and benthic coenoses. These lakes are not polluted by anthropogenic activity and so could be considered as a pattern of ecologically pure water-bodies. It is important to add that high mountain lakes of Pribaikalye presently serve as refuges for species that were widespread during past geological epochs.  相似文献   
213.
Conventional cross-section balancing techniques based on layer length measuring can be applied only for foreland structures. To analyse complicated hinterland structure with numerous small-scale folds, this balancing technique requires the reliable and detailed tracing of the morphology of any layer throughout the cross-section, which is unattainable. We present a special kinematic method of balancing cross sections based “on the geometry of the folded domain” which enables the structural restoration of hinterland regions. We apply the method to restore the detailed structural section along the Shilbilisaj River, having a length of 26 km. We divided this section into 40–60 so-called “domains” each including 2–7 folds. Our method uses the fold's morphology to determine the strain ellipsoid, which describes the deformation of each domain and is used to restore its pre-folded state. By combining the pre-folded states of the domains, we reconstruct the entire profile, and calculate shortening values as K = L0/L1 (initial to final length). The overall shortening value for the profile is 4.49, incrementally varying along the section from 3.79 to 5.53. The comparable results of two independently performed reconstructions emphasize the reliability of the applied balancing method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号