首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24915篇
  免费   197篇
  国内免费   928篇
测绘学   1437篇
大气科学   2000篇
地球物理   4640篇
地质学   11832篇
海洋学   1034篇
天文学   1676篇
综合类   2172篇
自然地理   1249篇
  2023年   2篇
  2022年   3篇
  2021年   21篇
  2020年   29篇
  2019年   23篇
  2018年   4784篇
  2017年   4053篇
  2016年   2620篇
  2015年   267篇
  2014年   136篇
  2013年   97篇
  2012年   1012篇
  2011年   2754篇
  2010年   2031篇
  2009年   2327篇
  2008年   1904篇
  2007年   2377篇
  2006年   64篇
  2005年   205篇
  2004年   414篇
  2003年   414篇
  2002年   253篇
  2001年   54篇
  2000年   56篇
  1999年   17篇
  1998年   22篇
  1997年   1篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   25篇
  1980年   20篇
  1978年   1篇
  1977年   4篇
  1976年   6篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
271.
Wind-turbine-wake evolution during the evening transition introduces variability to wind-farm power production at a time of day typically characterized by high electricity demand. During the evening transition, the atmosphere evolves from an unstable to a stable regime, and vertical stratification of the wind profile develops as the residual planetary boundary layer decouples from the surface layer. The evolution of wind-turbine wakes during the evening transition is examined from two perspectives: wake observations from single turbines, and simulations of multiple turbine wakes using the mesoscale Weather Research and Forecasting (WRF) model. Throughout the evening transition, the wake’s wind-speed deficit and turbulence enhancement are confined within the rotor layer when the atmospheric stability changes from unstable to stable. The height variations of maximum upwind-downwind differences of wind speed and turbulence intensity gradually decrease during the evening transition. After verifying the WRF-model-simulated upwind wind speed, wind direction and turbulent kinetic energy profiles with observations, the wind-farm-scale wake evolution during the evening transition is investigated using the WRF-model wind-farm parametrization scheme. As the evening progresses, due to the presence of the wind farm, the modelled hub-height wind-speed deficit monotonically increases, the relative turbulence enhancement at hub height grows by 50%, and the downwind surface sensible heat flux increases, reducing surface cooling. Overall, the intensifying wakes from upwind turbines respond to the evolving atmospheric boundary layer during the evening transition, and undermine the power production of downwind turbines in the evening.  相似文献   
272.
Major transformation of the global energy system is required for climate change mitigation. However, energy demand patterns and supply systems are themselves subject to climate change impacts. These impacts will variously help and hinder mitigation and adaptation efforts, so it is vital they are well understood and incorporated into models used to study energy system decarbonisation pathways. To assess the current state of understanding of this topic and identify research priorities, this paper critically reviews the literature on the impacts of climate change on the energy supply system, summarising the regional coverage of studies, trends in their results and sources of disagreement. We then examine the ways in which these impacts have been represented in integrated assessment models of the electricity or energy system.Studies tend to agree broadly on impacts for wind, solar and thermal power stations. Projections for impacts on hydropower and bioenergy resources are more varied. Key uncertainties and gaps remain due to the variation between climate projections, modelling limitations and the regional bias of research interests. Priorities for future research include the following: further regional impact studies for developing countries; studies examining impacts of the changing variability of renewable resources, extreme weather events and combined hazards; inclusion of multiple climate feedback mechanisms in IAMs, accounting for adaptation options and climate model uncertainty.  相似文献   
273.
The rainy season precipitation in Tibet (RSPT) is a direct cause for local floods/droughts. It also indirectly affects the thermal conditions of the Tibetan Plateau, which can result in anomalous patterns of atmospheric circulation over East Asia. The interannual variability of the RSPT is often linked with the El Niño–Southern Oscillation (ENSO), but the relevant mechanisms are far from being understood, particularly for different types of ENSO events. We investigated the interannual variation of the RSPT in association with different types of ENSO. A quasi-3-yr period of the RSPT (less–more–more precipitation) was significant at the 95% confidence level. A joint multi-taper method with singular value decomposition analysis of the coupled field between the RSPT and the sea surface temperature (SST) revealed that the developing eastern Pacific type El Niño was accompanied by a decrease in the RSPT. The shift from the central Pacific type El Niño to the eastern Pacific La Niña was accompanied by an increase in the RSPT. Weakening of the central Pacific La Niña was accompanied by an increase in the RSPT. Analysis of the mechanism of this coupling, using the same analysis method but other climatic factors, indicated that the gradually strengthening eastern Pacific El Niño can inhibit the Walker circulation, weakening the South Asian summer monsoon, and resulting in transport of less water vapor from the Bay of Bengal to Tibet. The change from the central Pacific El Niño to the eastern Pacific La Niña led to continued strengthening of the Walker circulation with westward movement of the ascending area. This enhanced the South Asian summer monsoon over the Arabian Sea and transported more water vapor to Tibet. The decreasing central Pacific La Niña accompanied by persistent cooling of SSTs in the equatorial Pacific led to a strong eastern North Pacific summer monsoon, causing an anomaly in the easterly transport of water vapor from the Sea of Japan to Tibet and increased RSPT.  相似文献   
274.
Glauconitic minerals are considered as one of the valuable input parameters in sequence stratigraphic analysis of a basin. In the present study glauconitic minerals are reported from subtidal green shale facies in the lower part of the Late Paleocene-Early Eocene Naredi Formation of western Kutch. On the basis of the foraminiferal assemblage the glauconite bearing beds are interpreted to have formed in a mid shelf depositional settings of an unstable marine conditions. XRD studies confirm the glauconite mineralogy of the green pellets and provide an estimation of glauconite maturity. Textural attributes of the glauconites confirm their derivation by different degrees of alteration of precursor feldspar grains. Because of the authigenic origin and autochthonous nature, these glauconites hold promise for understanding sequence stratigraphy of the Palaeogene succession of the western Kutch.  相似文献   
275.
The present work aimed to determine the mineralogical composition of Ypresian series and to clarify the influence of the dissolution of siliceous frustules on the genesis of fibrous clay minerals. The specimens sampled from CPG trench are mainly constituted of silica-rich rocks at Mides area located at the western part of Gafsa-Metlaoui basin. The samples were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM) in order to determine texture of constituents. The data obtained indicate that the bulk rock samples are mainly made up of opal CT and clay minerals. The latter consists of palygorskite-sepiolite minerals associated with smectite and few amount of illite. The trend of mineralogical composition indicates that fibrous clay minerals are more concentrated at the upper part. SEM observations indicated that palygorskite mineral appears as thread-like facies, which surround foliated texture of smectite in the lower part of the Mides section, although with the low Mg activity confirmed by the absence of dolomite. But, at the upper part of the Mides section, SEM observations revealed the occurrence of siliceous frustules, which have numerous dissolved areas and replacement of carbonate tests by silica. The dissolution saturated the depositional environment with silica which is required for the formation of palygorskite and sepiolite minerals, in addition to high Mg activity confirmed by the presence of dolomite in the bulk rock, which is required basically for the formation of sepiolite. Although the genesis mode of palygorskite and sepiolite is similar with very little difference, the genesis of sepiolite needs a high alkalinity than the formation of palygorskite.  相似文献   
276.
In order to predict exposure risks as well as appropriate remediation strategies for pesticides in soils, knowledge of pesticides sorption processes onto various representative soils is vital. Hence, laboratory batch experiments were carried out to study sorption of a pesticide, pentachlorophenol (PCP), on five soils obtained from different sub-Saharan agro-ecological zones (AEZs) in order to understand sorption equilibrium, kinetics, and thermodynamics. Experimental data showed that sorption equilibrium was attained within 24 h. The fitting of kinetic results and equilibrium data to different models suggested partly surface adsorption and partly partitioning of PCP within voids of the various soil components. Sorption was mainly attributed to sharing or exchange of valence electrons between negatively charged PCP molecules and positively charged soil sorption sites. The sorption process was spontaneous and accompanied by decreased entropy, but was pH and temperature dependent, reducing with increase in pH and temperature. The various soils’ PCP sorption capacities were directly proportional to their cation exchange capacities. The low PCP sorption observed in these soils suggested high risk of PCP being present in soil water solution, especially at higher temperatures, which can lead to contamination of the aquifer. This risk may be higher for soils obtained from AEZs with warmer natural temperatures.  相似文献   
277.
Single zircon ages determined by ion microprobe (SHRIMP II) for granitoid gneisses from the southern slope of the Baga Bogd massif (Gobi-Altai, southern Mongolia) reveal several episodes of zircon growth, ranging from late Palaeoproterozoic to late Cambrian. The oldest events are documented by a zircon crystallization age for a gneiss protolith at 1519 ± 11 Ma and by a xenocrystic zircon from a dark grey augen-gneiss yielding an age of c. 1701 Ma. Discrete igneous events are recorded in granite-gneisses with protolith emplacement ages of 983 ± 6, 956 ± 3 and 954 ± 8 Ma. These ages provide the first record of early Neoproterozoic magmatic activity in this region. A much younger and discrete magmatic event is recorded by several dioritic to granitic orthogneisses which are tectonically interlayered with the older gneisses and have protolith emplacement ages between 502 and 498 Ma. These late Cambrian granitoids of calc-alkaline affinity are likely to have been emplaced along an active continental margin and suggest that the Baga Bogd Precambrian crustal fragment was either docked against the southward (present-day coordinates) growing margin of the CAOB or was a large enough crustal entity to develop an arc along its margin. We speculate that the Precambrian gneisses of this massif may be part of a crustal fragment rifted off the Tarim Craton.  相似文献   
278.
Two sets of lab-scale sequencing batch reactors (SBR), i.e., control SBR and SBR using zeolite as carrier (zeo-SBR), were applied to assess nitrogen removal efficiency. The test results revealed that zeolite powder added in SBR could improve its performance. Due to the combination of zeolite adsorption for NH4 +–N and enhanced simultaneous nitrification and de-nitrification (SND), a higher removal ratio of ammonia nitrogen in wastewater was observed in the test reactor, and the introduction of zeolite powder was helpful to inhabit sludge bulging comparing with the control SBR, in other words, activated sludge immobilized by zeolite powder could remove NH4 +–N, COD, and PO4 significantly in a shorter cycle time. Applied two hydraulic retention times (HRTs) showed that the nitrogen and phosphorus removal could be improved while adapting to load variations.  相似文献   
279.
On the basis of the geological and geochemical studies, including chemical analysis of bulk rocks, rare-earth and trace element studies, fluid inclusion, and S and O isotopic analyses, the authors described the geo-logical background of the deposit in detail and presented significant proofs for the conditions of formation of the Shaxi porphyry copper-gold deposit. Compared with other large and supper-large porphyry copper deposits in China and the adjacent Cu-Au mineralized areas, the ore-forming processes and conditions were analyzed; and the possibil-ity of forming large porphyry copper deposits in the Shaxi area was discussed. The present study indicated that the ore-forming fluid and material were mainly of magmatic origin, while meteoric water played a certain role in the ore-forming processes. Interactions between subducting and overriding plates provided a major driving force for the formation of igneous rocks and the deposition of metal elements in East China since Jurassic. Based on the geo-chemical data of the Shaxi intrusive, it is found that the copper (gold) mineralization is closely related to the genesis of adakite-like intrusive in the Shaxi area. This adakite-like intrusive was formed in the subduction environment as a result of the subduction of the West Pacific plate toward the East China continent, where there is a great potential-ity to form a large porphyry copper deposit.  相似文献   
280.
K-lingunite is a high-pressure modification of K-feldspar that possesses the tetragonal hollandite structure. Variations of the Raman spectra of K-lingunite were studied up to ~31.5 GPa at room temperature, and in the range 79–823 K at atmospheric pressure. The Raman frequencies of all bands were observed to increase with increasing pressure, and decrease with increasing temperature for K-lingunite. This behavior is in line with those observed for most of other materials. New sharp Raman bands appear at pressures greater than 13–15 GPa, suggesting a phase transition in K-lingunite with increasing pressure. The transition is reversible when pressure was released. The appearance of these new Raman bands may correspond to the phase transition revealed earlier at around 20 GPa by X-ray diffraction studies. Instead of transforming back to its stable minerals, such as orthoclase, microcline or sanidine, K-lingunite became amorphous in the temperature range 803–823 K at atmospheric pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号