首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   10篇
  国内免费   2篇
测绘学   6篇
大气科学   13篇
地球物理   66篇
地质学   69篇
海洋学   72篇
天文学   50篇
综合类   3篇
自然地理   19篇
  2024年   1篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   11篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   9篇
  2012年   6篇
  2011年   9篇
  2010年   20篇
  2009年   22篇
  2008年   20篇
  2007年   15篇
  2006年   19篇
  2005年   10篇
  2004年   9篇
  2003年   6篇
  2002年   13篇
  2001年   12篇
  2000年   10篇
  1999年   10篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   10篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   5篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
  1961年   1篇
  1955年   1篇
排序方式: 共有298条查询结果,搜索用时 218 毫秒
61.
Wavenumber spectra of the martian atmosphere covering zonal wavenumbers s=1-6 were obtained as a function of latitude and season for the first time from the temperatures measured by the Thermal Emission Spectrometer onboard the Mars Global Surveyor. The stationary component tends to peak at s=2, where the martian topography has large amplitude, and drops rapidly at higher wavenumbers. The transient component in the middle and high latitudes tends to peak at s=1, which is lower than the most unstable wavenumber based on linear theories, and exhibits spectral slopes much flatter than the stationary component. In the equatorial region, the spectra of the transient component are almost flat, indicating that the organization of large-scale structures is less efficient in this region. The spectral shapes are similar between the 0.5 and 2.2 hPa surfaces, except that the slopes are slightly steeper at 0.5 than at 2.2 hPa, probably due to selective vertical transmission at low wavenumbers. The seasonal variation is relatively large in the middle and high latitudes, where the maximum power occurs in winter and the minimum occurs in summer, with an exception that the transient component is maximum in spring in the southern hemisphere. Intensification of s=1 transient waves is observed around the period of the initiation of global dust storms.  相似文献   
62.
We developed a seismometer system for a hard landing “penetrator” probe in the course of the former Japanese LUNAR-A project to deploy new seismic stations on the Moon. The penetrator seismometer system (PSS) consists of two short-period sensor components, a two-axis gimbal mechanism for orientation, and measurement electronics. To carry out seismic observations on the Moon using the penetrator, the seismometer system has to function properly in a lunar environment after a hard landing (impact acceleration of about 8000 G), and requires a signal-to-noise ratio to detect lunar seismic events. We evaluated whether the PSS could satisfactorily observe seismic events on the Moon by investigating the frequency response, noise level, and response to ground motion of our instrument in a simulated lunar environment after a simulated impact test. Our results indicate that the newly developed seismometer system can function properly after impact and is sensitive enough to detect seismic events on the Moon. Using this PSS, new seismic data from the Moon can be obtained during future lunar missions.  相似文献   
63.
The photoluminescence (PL) and optical excitation spectra of baratovite in aegirine syenite from Dara-i-Pioz, Tien Shan Mts., Tajikistan and katayamalite in aegirine syenite from Iwagi Islet, Ehime, Japan were obtained at 300 and 80 K. Under short wave (253.7 nm) ultraviolet light, baratovite and katayamalite exhibited bright blue-white luminescence. The PL spectrum of baratovite at 300 K consisted of a wide band with a peak at approximately 406 nm and a full width at half maximum (FWHM) of approximately 6.32k cm−1. The excitation spectrum of the blue-white luminescence from baratovite at 300 K consisted of a prominent band with a peak at approximately 250 nm. The PL and excitation spectra of katayamalite were similar to those of baratovite. The luminescence from these minerals was attributed to the intrinsic luminescence from the TiO6 center.  相似文献   
64.
The atmospheric 3He/4He ratio has been considered to be constant on a global scale, because the residence time of helium is significantly longer than the mixing time in the atmosphere. However, this ratio may be decreasing with time owing to the anthropogenic release of crustal helium from oil and natural gas wells, although this observation has been disputed. Here, we present the 3He/4He ratios of old air trapped in historical slags in Japan and of modern surface air samples collected at various sites around the world, measured with a newly developed analytical system. In air helium extracted from metallurgical slag found at refineries in operation between AD 1603 and 1907 in Japan, we determined a mean 3He/4He ratio of (5106 ± 108) × 10-5 RHESJ (where RHESJ is the 3He/4He ratio of the Helium Standard of Japan), which is consistent with the previously reported value of (5077 ± 59) × 10-5 RHESJ for historical slags in France and United Arab Emirates and about 4% higher than that of average modern air, (4901 ± 4) × 10-5 RHESJ. This result implies that the air 3He/4He ratio has decreased with time as expected by anthropogenic causes. Our modern surface air samples revealed that the 3He/4He ratio increases from north to south at a rate of (0.16 ± 0.08) × 10-5 RHESJ/degree of latitude, suggesting that the low 3He/4He ratio originates in high-latitude regions of the northern hemisphere, which is consistent with the fact that most fossil fuel is extracted and consumed in the northern hemisphere.  相似文献   
65.
Mass depletion of bodies through successive collisional disruptions (i.e., collision cascade) is one of the most important processes in the studies of the asteroids belt, the Edgeworth-Kuiper belt, debris disks, and planetary formation. The collisional disruption is divided into two types, i.e., catastrophic disruption and cratering. Although some studies of the collision cascades neglected the effect of cratering, it is unclear which type of disruption makes a dominant contribution to the collision cascades. In the present study, we construct a simple outcome model describing both catastrophic disruption and cratering, which has some parameters characterizing the total ejecta mass, the mass of the largest fragment, and the power-law exponent of the size distribution of fragments. Using this simple outcome model with parameters, we examine the model dependence of the mass depletion time in collision cascades for neglect of coalescence of colliding bodies due to high collisional velocities. We find the cratering collisions are much more effective in collision cascades than collisions with catastrophic disruption in a wide region of the model parameters. It is also found that the mass depletion time in collision cascades is mainly governed by the total ejecta mass and almost insensitive to the mass of the largest fragment and the power-law exponent of fragments for a realistic parameter region. The total ejecta mass is usually determined by the ratio of the impact energy divided by the target mass (i.e. Q-value) to its threshold value for catastrophic disruption, as well as in our simple model. We derive a mass depletion time in collision cascades, which is determined by of the high-mass end of collision cascades. The mass depletion time derived with our model would be applicable to debris disks and planetary formation.  相似文献   
66.
The purpose of this paper is to investigate the estimation of dynamic elastic behavior of the ground using the Kalman filter finite element method. In the present paper, as the state equation, the balance of stress equation, the strain–displacement equation and the stress–strain equation are used. For temporal discretization, the Newmark ¼ method is employed, and for the spatial discretization the Galerkin method is applied. The Kalman filter finite element method is a combination of the Kalman filter and the finite element method. The present method is adaptable to estimations not only in time but also in space, as we have confirmed by its application to the Futatsuishi quarry site. The input data are the measured velocity, acceleration, etc., which may include mechanical noise. It has been shown in numerical studies that the estimated velocity, acceleration, etc., at any other spatial and temporal point can be obtained by removing the noise included in the observation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
67.
68.
Abstract Self-potential variations were measured to estimate the magnitude of electrokinetic and hydrological parameters (zeta potential and permeability) of the Nojima Fault zone in Awaji, Japan. The study observed self-potential variations that seemed to be associated with water flow from the injection well to the fracture zone, which were induced by turning the injection on and off. Amplitudes of the variations were a few to 0.03 V across 320–450 m dipoles. These variations can be explained well with an electrokinetic model. The quantity k/ζ (permeability/zeta potential) is in the range 1.6 × 10−13− 5.4 × 10−13 m2/V. Permeability of the Nojima fault zone can be estimated as approximately 10−16–10−15 m2 on the assumption that the zeta potential is in the range –0.01 to –0.001 V.  相似文献   
69.
Abstract The temporal variation of seismic velocity near the Nojima Fault, which ruptured during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake), was detected using an accurately controlled routine-operated seismic source (ACROSS). The source generates elastic waves by a centrifugal force of an eccentric mass rotating around an axis. The mass is driven with an AC servomotor whose angular position is accurately controlled with reference to a very accurate global positioning system (GPS) clock. The error of the mass' position is less than 0.002 radian and does not accumulate. As a result, the source generates sinusoidal waves of very narrow spectral peaks enabling their detection with an excellent signal-to-noise ratio. Although the stability of the rotation is quite excellent, a large daily variation was found, which seems to be caused by changes in atmospheric temperature. The daily variation was 10% in amplitude and 0.1 radian in phase of the signal observed at the 800 m borehole seismometer. A significant variation was found to be due to that of coupling between the rotational source and the foundation made of reinforced concrete in which the source was situated. In order to make a correction on the signal of the 800 m borehole seismometer, the vibration of the foundation was measured and modeled assuming a rigid body movement. The correction successfully reduced the daily variation by approximately 90%, resulting in a variation of 1% in amplitude and 0.01 radian in phase. The phase variation of 0.01 radian corresponds to 100 μs and less than 0.1% in velocity over 1000 m between the source and the receiver.  相似文献   
70.
The longwave upward radiation was calculated for an urban canopy by using a Monte Carlo model. The effects of the urban geometry were examined in terms of the fractional roof area, the height of the buildings and the emissivity. The urban canopy consists of identically sized buildings and the ground surfaces. The model allows for the temperature differences between the buildings and the ground surface and for multiple reflections in the canyon.The Monte Carlo results show that neglect of the geometric effects causes significant errors in calculated upward radiation: calculations with area-weighting of the radiation emitted from flat homogeneous surfaces are not appropriate. The upward flux is a nonlinear function of the fractional roof area, which may be approximated by a function of the square or cube of the fractional roof area. Neglect of the reflections by non-black surfaces (emissivity<1) underestimates the upward flux by a few percent for a canopy of emissivity=0.9. Radiation effects due to multiple reflections in the canyon are parameterized by use of the view factor and the fractional roof area. The parameterization scheme yields accurate results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号