首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   4篇
  国内免费   4篇
测绘学   10篇
大气科学   30篇
地球物理   26篇
地质学   28篇
海洋学   10篇
综合类   3篇
自然地理   3篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   6篇
  2013年   13篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   6篇
  2007年   7篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1983年   1篇
  1980年   2篇
  1979年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   2篇
  1963年   1篇
  1956年   1篇
排序方式: 共有110条查询结果,搜索用时 250 毫秒
11.
Biodegradation of oil depends on the nature of the oil, the type of microbial community and a variety of environmental factors. Green oils are being used as consumer goods and as raw materials in industries such as food processing, pharmaceutical and cosmetic. Microbial contaminations of green oils have been the cause of degradation problems. Serratia Marcessens produced cytochrome oxidase, catalase, Dextrose, Lactose, Manose and sorbitol enzymes were the main reason for the degradation af palmarosa oil. Changes of colour and turbidity was also the evidence for green oil degradation by bacteria. More oxygen included protons (0-CH2) group was produced in the presence of bacterial species and the addition of oxygen took place during bacterial degradation of palmarosa oil. The biodegradation of palmarosa oil by Serratia marcescens have been carried out using High Performance Liquid Chromatography, Fourier Transform Infrared Spectroscopy and Nuclear Magnetic spectroscopy analysis. Carboxyl group present in the palmorasa oil is utilised as a sole carbon sources for the Serratia marcescens.  相似文献   
12.
13.
Ensemble seasonal integrations are carried out with the COLA GCM, with a view to understand the dynamical connection between warm SST anomalies in the equatorial central-eastern Pacific Ocean and the upper level stationary wave anomalies seen during drought years over the Indian summer monsoon region. In addition, experiments with and without orography are performed in order to examine the role of the Himalayas in modulating the El Niño induced stationary wave anomalies over the summer monsoon region. The GCM simulations show a statistically significant weakening of the summer monsoon activity over India in response to the SST forcing in the equatorial Pacific Ocean. This weakening of the summer monsoon appears to be largely related to modifications of the local Hadley and Walker cells over the summer monsoon region. In addition, it is seen that the anomalous ENSO divergent forcing over the tropical Pacific Ocean can act as a potential source for Rossby wave dispersion. Here one finds the possibility of meridionally propagating Rossby waves, which emanate from the ENSO forcing region, to interact with the subtropical westerlies and generate anomalous highs and lows in the subtropics and extratropics. The quasi-stationary perturbations seen over west Asia, Pakistan and northwest India during drought years, seem to be generated by the above mechanism. An alternate mechanism that could be important for the persistence of the quasi-stationary perturbations seems to be based on the dynamic excitation of middle latitude normal modes which can extract energy from the zonally varying unstable basic flow. It is seen from the GCM simulations, that the Himalayan orography plays a crucial role in anchoring the El Niño induced extratropical westerly troughs far to the west in the high latitude belt. In the absence of orography it is seen that the ENSO induced extra-tropical cyclonic anomalies tend to intrude southward into the monsoon region thereby destroying the regional scale circulations completely. Another effect due to the Himalayas is to generate lee waves on the eastern side of the topographic barrier which encircle the globe in the subtropics and midlatitudes.  相似文献   
14.
In the analysis of water quality by remote sensing, it is widely reported, that, several parameters of water quality are correlated with the reflectances and the ratios of reflectances of the water body in different spectral bands. In this paper, it is shown empirically, that, the pairwise product of the reflectances in different bands is better correlated than the bands and their ratios. A possible explanation for this pnenomenon is also suggested.  相似文献   
15.
16.
 Detailed hydrogeological studies in a granitic micro-watershed have been carried out to determine the extent, behavior, and characteristics of the aquifer. The study includes analysis of lithologs, drill time log, pumping tests, and slug tests. Realistic field conditions have been taken into account for characterizing the aquifer system. Slug tests were carried out to estimate aquifer parameters at the wells which could not sustain pumping. Received: 20 November 1997 · Accepted: 23 February 1998  相似文献   
17.
An intriguing feature associated with ‘breaks’ in the Indian summer monsoon is the occurrence of intense/flood-producing precipitation confined to central-eastern parts of the Himalayan (CEH) foothills and north-eastern parts of India. Past studies have documented various large-scale circulation aspects associated with monsoon-breaks, however the dynamical mechanisms responsible for anomalous precipitation enhancement over CEH foothills remain unclear. This problem is investigated using diagnostic analyses of observed and reanalysis products and high-resolution model simulations. The present findings show that the anomalous precipitation enhancement over the CEH foothills during monsoon-breaks emerges as a consequence of interactions between southward intruding mid-latitude westerly troughs and the South Asian monsoon circulation in its weak phase. These interactions facilitate intensification of mid-tropospheric cyclonic vorticity and strong ascending motion over the CEH foothills, so as to promote deep convection and concentrated rainfall activity over the region during monsoon-breaks. Mesoscale orographic effects additionally tend to amplify the vertical motions and precipitation over the CEH foothills as evidenced from the high-resolution model simulations. It is further noted from the model simulations that the coupling between precipitation and circulation during monsoon-breaks can produce nearly a threefold increase of total precipitation over the CEH foothills and neighborhood as opposed to active-monsoon conditions.  相似文献   
18.
The SST-precipitation relationship in the intraseasonal variability (ISV) over the Asian monsoon region is examined using recent high quality satellite data and simulations from a state of the art coupled model, the climate forecast system version 2 (CFSv2). CFSv2 demonstrates high skill in reproducing the spatial distribution of the observed climatological mean summer monsoon precipitation along with its interannual variability, a task which has been a conundrum for many recent climate coupled models. The model also exhibits reasonable skill in simulating coherent northward propagating monsoon intraseasonal anomalies including SST and precipitation, which are generally consistent with observed ISV characteristics. Results from the observations and the model establish the existence of spatial variability in the atmospheric convective response to SST anomalies, over the Asian monsoon domain on intraseasonal timescales. The response is fast over the Arabian Sea, where precipitation lags SST by ~5 days; whereas it is slow over the Bay of Bengal and South China Sea, with a lag of ~12 days. The intraseasonal SST anomalies result in a similar atmospheric response across the basins, which consists of a destabilization of the bottom of the atmospheric column, as observed from the equivalent potential temperature anomalies near the surface. However, the presence of a relatively strong surface convergence over the Arabian Sea, due to the presence of a strong zonal gradient in SST, which accelerates the upward motion of the moist air, results in a relatively faster response in terms of the local precipitation anomalies over the Arabian Sea than over the Bay of Bengal and South China Sea. With respect to the observations, the ocean–atmosphere coupling is well simulated in the model, though with an overestimation of the intraseasonal SST anomalies, leading to an exaggerated SST-precipitation relationship. A detailed examination points to a systematic bias in the thickness of the mixed layer of the ocean model, which needs to be rectified. A too shallow (deep) mixed layer enhances (suppress) the amplitude of the intraseasonal SST anomalies, thereby amplifying (lessening) the ISV and the active-break phases of the monsoon in the model.  相似文献   
19.
This study examines the feasibility of using a variable resolution global general circulation model (GCM), with telescopic zooming and enhanced resolution (~35 km) over South Asia, to better understand regional aspects of the South Asian monsoon rainfall distribution and the interactions between monsoon circulation and precipitation. For this purpose, two sets of ten member realizations are produced with and without zooming using the LMDZ (Laboratoire Meteorologie Dynamique and Z stands for zoom) GCM. The simulations without zoom correspond to a uniform 1° × 1° grid with the same total number of grid points as in the zoom version. So the grid of the zoomed simulations is finer inside the region of interest but coarser outside. The use of these finer and coarser resolution ensemble members allows us to examine the impact of resolution on the overall quality of the simulated regional monsoon fields. It is found that the monsoon simulation with high-resolution zooming greatly improves the representation of the southwesterly monsoon flow and the heavy precipitation along the narrow orography of the Western Ghats, the northeastern mountain slopes and northern Bay of Bengal (BOB). A realistic Monsoon Trough (MT) is also noticed in the zoomed simulation, together with remarkable improvements in representing the associated precipitation and circulation features, as well as the large-scale organization of meso-scale convective systems over the MT region. Additionally, a more reasonable simulation of the monsoon synoptic disturbances (lows and disturbances) along the MT is noted in the high-resolution zoomed simulation. On the other hand, the no-zoom version has limitations in capturing the depressions and their movement, so that the MT zone is relatively dry in this case. Overall, the results from this work demonstrate the usefulness of the high-resolution variable resolution LMDZ model in realistically capturing the interactions among the monsoon large-scale dynamics, the synoptic systems and the meso-scale convective systems, which are essential elements of the South Asian monsoon system.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号