Mt Iriga in southeastern Luzon is known for its spectacular collapse scar that was possibly created in 1628 ad by a 1.5-km3 debris avalanche. The debris avalanche deposit (DAD) covered 70?km2 and dammed the Barit River to form Lake Buhi. The collapse has been ascribed to a non-volcanic trigger related to a major strike-slip fault under the volcano. Using a combination of fieldwork and remote sensing, we have identified a similar size, older DAD to the southwest of the edifice that originated from a sector oblique to the underlying strike-slip fault. Both deposits cover wide areas of low, waterlogged plains, to a distance of about 16?km for the oldest and 12?km for the youngest. Hundreds of metre-wide and up to 50-m-high hummocks of intact conglomerate, sand and clay units derived from the base of the volcano show that the initial failure planes cut deep into the substrata. In addition, large proportions of both DAD consist of ring-plain sediments that were incorporated by soft-sediment bulking and extensive bulldozing. An ignimbrite unit incorporated into the younger DAD forms small (less than 5?m high) discrete hummocks between the larger ones. Both debris avalanches slid over water-saturated soft sediment or ignimbrite and spread out on a basal shear zone, accommodated by horst and graben formation and strike-slip faults in the main mass. The faults are listric and flatten into a well-developed basal shear zone. This shear zone contains components from the substrate and has a diffuse contact with the intact substrata. Long, transport-normal ridges in the distal parts are evidence of compression related to deceleration and bulldozing. The collapse orientation and structure on both sectors and DAD constituents are consistent with collapse being a response to combined transtensional faulting and gravity spreading. Iriga can serve as a model for other volcanoes, such as Mayon, that stand in sedimentary basins undergoing transtensional strike-slip faulting. 相似文献
Conventional water treatments when downsized to cover the demands of small and scattered populations are costly and ineffective. In fact, many small towns cannot afford the high average treatment costs nor provide the skill and complex management requirements. Even when these facilities are available, waste water might not be properly treated. Land application system treatments (LAST) have been shown to be preferable on the basis of their technical effectiveness and financial viability. The recently approved Spanish regulations (RDL 1620/2007, pp 50369–50661) represent an opportunity for the implementation of well-designed LASTs. This paper presents an assessment methodology for the design of LASTs by combining technical, financial and location criteria. The method is applied to the design of LASTs to cover the water disposal demand of twelve municipalities located within the protected natural landscape, and surrounding areas of ‘El Rebollar’, Salamanca, Spain. 相似文献
One of the most serious problems caused by eutrophication of shallow lakes is the disappearance of submerged macrophytes and the switch to a turbid, phytoplankton-dominated state. The reduction of external nutrient loads often does not result in a change back to the macrophyte-dominated state because stabilising mechanisms that cause resilience may delay a response. Additional internal lake restoration measures may therefore be needed to decrease the concentration of total phosphorus and increase water clarity. The re-establishment of submerged macrophytes required for a long-term stability of clear water conditions, however, may still fail, or mass developments of tall-growing species may cause nuisance for recreational use. Both cases are often not taken into account when restoration measures are planned in Germany, and existing schemes to reduce eutrophication consider the topic inadequately. Here we develop a step-by-step guideline to assess the chances of submerged macrophyte re-establishment in shallow lakes. We reviewed and rated the existing literature and case studies with special regard on (1) the impact of different internal lake restoration methods on the development of submerged macrophytes, (2) methods for the assessment of natural re-establishment, (3) requirements and methods for artificial support of submerged macrophyte development and (4) management options of macrophyte species diversity and abundance in Germany. This guideline is intended to help lake managers aiming to restore shallow lakes in Germany to critically asses and predict the potential development of submerged vegetation, taking into account the complex factors and interrelations that determine their occurrence, abundance and diversity. 相似文献
The frequent time‐lapse observations from the life of field seismic system across the Valhall field provide a wealth of information. The responses from the production and injection wells can be observed through time‐shift and amplitude changes. These observations can be compared to modelled synthetic seismic responses from a reservoir simulation model of the Valhall Field. The observed differences between the observations and the modelling are used to update and improve the history match of the reservoir model. The uncertainty of the resulting model is reduced and a more confident prediction of future reservoir performance is provided. A workflow is presented to convert the reservoir model to a synthetic seismic response and compare the results to the observed time‐lapse responses for any time range and area of interest. Correlation based match quality factors are calculated to quantify the visual differences. This match quality factor allows us to quantitatively compare alternative reservoir models to help identify the parameters that best match the seismic observations. Three different case studies are shown where this workflow has helped to reduce the uncertainty range associated with specific reservoir parameters. By updating various reservoir model parameters we have been able to improve the match to the observations and thereby improve the overall reservoir model predictability. The examples show positive results in a range of different reservoir modelling issues, which indicates the flexibility of this workflow and the ability to have an impact in most reservoir modelling challenges. 相似文献
Previous work in the Gulf of Lions (western Mediterranean Sea) has suggested that significant amounts of sediment escape through the western part of this tectonically passive margin, despite it being far removed from the primary sediment source (the Rhone River, ∼160 km to the NE). The primary mechanism behind this export is hypothesized to be the interaction of a regional, southwestward sediment-transport path with a canyon deeply incising the southwestern part of the shelf, Cap de Creus Canyon. 相似文献
The purpose of this work was to investigate a new and fast inversion methodology for the prediction of subsurface formation properties such as porosity, salinity and oil saturation, using time‐dependent nuclear well logging data. Although the ultimate aim is to apply the technique to real‐field data, an initial investigation as described in this paper, was first required; this has been carried out using simulation results from the time‐dependent radiation transport problem within a borehole. Simulated neutron and γ‐ray fluxes at two sodium iodide (NaI) detectors, one near and one far from a pulsed neutron source emitting at ~14 MeV, were used for the investigation. A total of 67 energy groups from the BUGLE96 cross section library together with 567 property combinations were employed for the original flux response generation, achieved by solving numerically the time‐dependent Boltzmann radiation transport equation in its even parity form. Material property combinations (scenarios) and their correspondent teaching outputs (flux response at detectors) are used to train the Artificial Neural Networks (ANNs) and test data is used to assess the accuracy of the ANNs. The trained networks are then used to produce a surrogate model of the expensive, in terms of computational time and resources, forward model with which a simple inversion method is applied to calculate material properties from the time evolution of flux responses at the two detectors. The inversion technique uses a fast surrogate model comprising 8026 artificial neural networks, which consist of an input layer with three input units (neurons) for porosity, salinity and oil saturation; and two hidden layers and one output neuron representing the scalar photon or neutron flux prediction at the detector. This is the first time this technique has been applied to invert pulsed neutron logging tool information and the results produced are very promising. The next step in the procedure is to apply the methodology to real data. 相似文献
In the volcanic sequence of the Betic Ophiolitic Association (BOA) volcanic structures and textures are preserved in spite of being metamorphosed to the edogite facies. The original quenched glassy margins of the pillows and lava flows are still recognizable by the darker colour, fine-grained textures and scarcity of phenocrysts. The BOA eclogitized pillows have chemical compositions very similar to the basalts enriched in LIL elements erupted nowadays at the mid-oceanic ridges. Magmatism which generated the BOA most likely began under continental rift conditions at the Triassic-Jurassic boundary and continued under ocean-floor extensional conditions during the lower and middle Jurassic. In age and petrological characteristics this magmatism is equivalent to that of the western Tethys ophiolites. During the Late Cretaceous, due to the collision of African and Iberian Plates, the BOA ophiolites were subducted and underwent a metamorphism in the eclogite fades whose climax in the Lugros outcrop can be estimated at 650–700°C and about 20 kb. 相似文献
The eastern part of the Guiana Shield, northern Amazonian Craton, in South America, represents a large orogenic belt developed during the Transamazonian orogenic cycle (2.26–1.95 Ga), which consists of extensive areas of Paleoproterozoic crust and two major Archean terranes: the Imataca Block, in Venezuela, and the here defined Amapá Block, in the north of Brazil.
Pb-evaporation on zircon and Sm–Nd on whole rock dating were provided on magmatic and metamorphic units from southwestern Amapá Block, in the Jari Domain, defining its long-lived evolution, marked by several stages of crustal accretion and crustal reworking. Magmatic activity occurred mainly at the Meso-Neoarchean transition (2.80–2.79 Ga) and during the Neoarchean (2.66–2.60 Ga). The main period of crust formation occurred during a protracted episode at the end of Paleoarchean and along the whole Mesoarchean (3.26–2.83 Ga). Conversely, crustal reworking processes have dominated in Neoarchean times. During the Transamazonian orogenic cycle, the main geodynamic processes were related to reworking of older Archean crust, with minor juvenile accretion at about 2.3 Ga, during an early orogenic phase. Transamazonian magmatism consisted of syn- to late-orogenic granitic pulses, which were dated at 2.22 Ga, 2.18 Ga and 2.05–2.03 Ga. Most of the εNd values and TDM model ages (2.52–2.45 Ga) indicate an origin of the Paleoproterozoic granites by mixing of juvenile Paleoproterozoic magmas with Archean components.
The Archean Amapá Block is limited in at southwest by the Carecuru Domain, a granitoid-greenstone terrane that had a geodynamic evolution mainly during the Paleoproterozoic, related to the Transamazonian orogenic cycle. In this latter domain, a widespread calc-alkaline magmatism occurred at 2.19–2.18 Ga and at 2.15–2.14 Ga, and granitic magmatism was dated at 2.10 Ga. Crustal accretion was recognized at about 2.28 Ga, in agreement with the predominantly Rhyacian crust-forming pattern of the eastern Guiana Shield. Nevertheless, TDM model ages (2.50–2.38 Ga), preferentially interpreted as mixed ages, and εNd < 0, point to some participation of Archean components in the source of the Paleoproterozoic rocks. In addition, the Carecuru Domain contains an oval-shaped Archean granulitic nucleus, named Paru Domain. In this domain, Neoarchean magmatism at about 2.60 Ga was produced by reworking of Mesoarchean crust, as registered in the Amapá Block. Crustal accretion events and calc-alkaline magmatism are recognized at 2.32 Ga and at 2.15 Ga, respectively, as well as charnockitic magmatism at 2.07 Ga.
The lithological association and the available isotopic data registered in the Carecuru Domain suggests a geodynamic evolution model based on the development of a magmatic arc system during the Transamazonian orogenic cycle, which was accreted to the southwestern border of the Archean Amapá Block. 相似文献
Marine-geologic investigations on the Arabian Sea by Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) in 1995 and 1998, and land expeditions in 1998 and 1999 to the coastal regions of the Makran Desert/Pakistan have extended the knowledge of the aerial distribution of mud volcanoes. These structures rise from under-compacted formations within the regional accretionary prism, which is built by the subduction of the oceanic crust of the Arabian Sea and its km-thick sedimentary load. The occurrence of mud volcanoes is limited to the abyssal plain near the accretionary front, to the coastal region of the Makran Desert and to a region in the interior of the Desert to the south to southeast of the so-called Hinglay Synform. The location of mud volcanoes in Pakistan is clearly tied to fault systems. Mud volcanoes are conspicuously absent on the lower slope of the accretionary prism, where thick gas hydrate layers have developed. The presence of large gas plumes emerging from the seafloor landward of the gas hydrate stability zone at water depths of less than 800 m points to a redirection of fluids from depth, which might explain the absence of mud volcanoes along the lower slope. 相似文献