首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3953篇
  免费   1387篇
  国内免费   204篇
测绘学   99篇
大气科学   215篇
地球物理   2234篇
地质学   1676篇
海洋学   382篇
天文学   572篇
综合类   46篇
自然地理   320篇
  2024年   3篇
  2023年   7篇
  2022年   39篇
  2021年   69篇
  2020年   94篇
  2019年   248篇
  2018年   257篇
  2017年   361篇
  2016年   404篇
  2015年   382篇
  2014年   429篇
  2013年   482篇
  2012年   336篇
  2011年   343篇
  2010年   321篇
  2009年   228篇
  2008年   282篇
  2007年   215篇
  2006年   149篇
  2005年   152篇
  2004年   122篇
  2003年   138篇
  2002年   121篇
  2001年   108篇
  2000年   113篇
  1999年   31篇
  1998年   12篇
  1997年   21篇
  1996年   11篇
  1995年   10篇
  1994年   13篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1962年   1篇
  1958年   1篇
排序方式: 共有5544条查询结果,搜索用时 15 毫秒
991.
This paper presents an efficient methodology for computing constant‐ductility inelastic response spectra. The computation of constant‐ductility spectra involves numerical root‐finding algorithms to find the strongest structure providing a desired ductility response. Smooth inelastic structural behavior is modeled using a first‐order nonlinear differential equation and the transient structural response is solved using an implicit algorithm requiring Newton iterations at each time step. For structural models with smooth hysteretic behavior (not piece‐wise linear), a simple root‐finding method involving a combination of hyperbolic fits, linear interpolation, and Newton's method converges upon the highest strength (conservative) solution with a small number of iterations. The effect of the hysteretic smoothness on the occurrence of multiple roots is examined for two near‐fault and two far‐fault earthquake records, and for two measures of ductility and for normalized hysteretic energy. The results indicate how the smoothness of the hysteretic behavior affects ductility demand and constant‐ductility response spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
992.
The management of reclaimed slopes derived from industrial and civil activities (e.g. surface mining and road construction) requires the development of practical stability analysis approaches that integrate the processes and mechanisms that rule the dynamics of these ubiquitous emerging ecosystems. This work describes a new modelling approach focused on stability analysis of water‐limited reclaimed slopes, where interactive relationships between rill erosion and vegetation regulate ecosystem stability. Our framework reproduces two main groups of possible trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. Furthermore, this analytical approach allows the determination of threshold values for the state variables (i.e. vegetation cover and rill erosion) that drive the system's stability, facilitating the identification of critical situations that require specific human intervention (e.g. revegetation or, in very problematic cases, revegetation combined with rill network destruction) to ensure the long‐term sustainability of the restored ecosystem. The application of our threshold analysis framework in Mediterranean‐dry reclaimed slopes derived from surface coal mining (the Teruel coalfield in central‐eastern Spain) showed a good field‐based performance. Therefore, we believe that this model is a valuable contribution for the management of water‐limited reclaimed systems, including those associated with rill erosion, as it provides a tool for the evaluation of restoration success and can play an important role in decision‐making during ecosystem restoration in severely disturbed landscapes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
993.
Field and laboratory studies have indicated that rock fragments in the topsoil may have a large impact on soil properties, soil quality, hydraulic, hydrological and erosion processes. In most studies, the rock fragments investigated still remain visible at the soil surface and only properties of these visible rock fragments are used for predicting runoff and soil loss. However, there are indications that rock fragments completely incorporated in the topsoil could also significantly influence the percolation and water distribution in stony soils and therefore, also infiltration, runoff and soil loss rates. Therefore, in this study interrill laboratory experiments with simulated rainfall for 60 min were conducted to assess the influence of subsurface rock fragments incorporated in a disturbed silt loam soil at different depths below the soil surface (i.e. 0.001, 0.01, 0.05 and 0.10 m), on infiltration, surface runoff and interrill erosion processes for small and large rock fragment sizes (i.e. mean diameter 0.04 and 0.20 m, respectively). Although only small differences in infiltration rate and runoff volume are observed between the soil without rock fragments (control) and the one with subsurface rock fragments, considerable differences in total interrill soil loss are observed between the control treatment and both contrasting rock fragments sizes. This is explained by a rapid increase in soil moisture in the areas above the rock fragments and therefore a decrease in topsoil cohesion compared with the control soil profile. The observed differences in runoff volume and interrill soil loss between the control plots and those with subsurface rock fragments is largest after a cumulative rainfall (Pcum) of 11 mm and progressively decreases with increasing Pcum. The results highlight the impacts and complexity of subsurface rock fragments on the production of runoff volume and soil loss and requires their inclusion in process‐based runoff and erosion models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
994.
Various types of satellite (AIRS/AMSU, MODIS) and ground measurements are used to analyze temperature trends in the four vertical layers (skin/surface, mid-troposphere, and low stratosphere) around the Korean Peninsula (123–132°E, 33–44°N) during the period from September 2002 to August 2010. The ground-based observations include 72 Surface Meteorological Stations (SMSs), 6 radiosonde stations (RAOBs), 457 Automatic Weather Stations (AWSs) over the land, and 5 buoy stations over the ocean. A strong warming (0.052 K yr?1) at the surface, and a weak warming (0.004~0.010 K yr?1) in the mid-troposphere and low stratosphere have been found from satellite data, leading to an unstable atmospheric layer. The AIRS/AMSU warming trend over the ocean surface around the Korean Peninsula is about 2.5 times greater than that over the land surface. The ground measurements from both SMS and AWS over the land surface of South Korea also show a warming of 0.043~0.082 K yr?1, consistent with the satellite observations. The correlation average (r = 0.80) between MODIS skin temperature and ground measurement is significant. The correlations between AMSU and RAOB are very high (0.91~0.95) in the anomaly time series, calculated from the spatial averages of monthly mean temperature values. However, the warming found in the AMSU data is stronger than that from the RAOB at the surface. The opposite feature is present above the mid-troposphere, indicating that there is a systematic difference. Warming phenomena (0.012~0.078 K yr?1) are observed from all three data sets (SMS, AWS, MODIS), which have been corroborated by the coincident measurements at five ground stations. However, it should also be noted that the observed trends are subject to large uncertainty as the corresponding 95% confidence intervals tend to be larger than the observed signals due to large thermal variability and the relatively short periods of the satellitebased temperature records. The EOF analysis of monthly mean temperature anomalies indicates that the tropospheric temperature variability near Korea is primarily linked to the Arctic Oscillation (AO), and secondarily to ENSO (El Niño and Southern Oscillation). However, the low stratospheric temperature variability is mainly associated with Southern Oscillation and then additionally with Quasi-Biennial Oscillation (QBO). Uncertainties from the different spatial resolutions between satellite data are discussed in the trends.  相似文献   
995.
The frequent time‐lapse observations from the life of field seismic system across the Valhall field provide a wealth of information. The responses from the production and injection wells can be observed through time‐shift and amplitude changes. These observations can be compared to modelled synthetic seismic responses from a reservoir simulation model of the Valhall Field. The observed differences between the observations and the modelling are used to update and improve the history match of the reservoir model. The uncertainty of the resulting model is reduced and a more confident prediction of future reservoir performance is provided. A workflow is presented to convert the reservoir model to a synthetic seismic response and compare the results to the observed time‐lapse responses for any time range and area of interest. Correlation based match quality factors are calculated to quantify the visual differences. This match quality factor allows us to quantitatively compare alternative reservoir models to help identify the parameters that best match the seismic observations. Three different case studies are shown where this workflow has helped to reduce the uncertainty range associated with specific reservoir parameters. By updating various reservoir model parameters we have been able to improve the match to the observations and thereby improve the overall reservoir model predictability. The examples show positive results in a range of different reservoir modelling issues, which indicates the flexibility of this workflow and the ability to have an impact in most reservoir modelling challenges.  相似文献   
996.
Prestack depth imaging of seismic data in complex areas such as salt structures requires extensive velocity model updating. In many cases, salt boundaries can be difficult to identify due to lack of seismic reflectivity. Traditional amplitude based segmentation methods do not properly tackle this problem, resulting in extensive manual editing. This paper presents a selection of seismic attributes that can reveal texture differences between the salt diapirs and the surrounding geology as opposed to amplitude‐sensitive attributes that are used in case of well defined boundaries. The approach consists of first extracting selected texture attributes, then using these attributes to train a classifier to estimate the probability that each pixel in the data set belongs to one of the following classes: near‐horizontal layering, highly‐dipping areas and the inside of the salt that appears more like a low amplitude area with small variations in texture. To find the border between the inside of the salt and the highly‐dipping surroundings, the posterior probability of the class salt is input to a graph‐cut algorithm that produces a smooth, continuous border. An in‐line seismic section and a timeslice from a 3D North Sea data set were employed to test the proposed approach. Comparisons between the automatically segmented salt contours and the corresponding contours as provided by an experienced interpreter showed a high degree of similarity.  相似文献   
997.
This study investigates the association between mean and turbulent flow variables and the movement of individual particles in a gravel‐bed river. The experimental design implemented in the Eaton‐North River (Québec, Canada) is based on the simultaneous observations at a high temporal resolution of both particle movements as bedload using an underwater video camera and of the streamwise and vertical flow velocity components using a vertical array of three electromagnetic current meters (ECMs). The frequency and distance of displacement of particles larger than 20 mm that were sliding or rolling on the bed were measured from a 10 minutes long film. Mean and turbulent flow properties obtained for periods without sediment transport are compared to those when particles were sliding and rolling. When particles are sliding, weak differences are present for the mean streamwise velocity and normal vertical stresses. Instantaneous Reynolds shear stresses are significantly lower for sliding events which was not expected but could be explained by the important dominance of Quadrant 3 events (inward interactions). When particles are rolling, only the vertical normal stresses show a weak difference from those observed in the absence of transport but they tend to occur when Quadrant 2 (ejections) dominate the flow field. For both sliding and rolling particles, vertical and/or streamwise fluid accelerations show high magnitude values when compared to periods without transport. For sliding particles, streamwise acceleration is mostly negative and combines most of the time with a positive vertical acceleration. For rolling particles, streamwise and vertical acceleration are predominantly of opposite sign. These results suggest that fluid acceleration or deceleration in the streamwise and vertical directions is affecting the pressure field around particles. In this study, fluid acceleration seems to play a more important role than Reynolds shear stress or normal stresses for bedload movements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
998.
Because a conventional isolation system with constant isolation frequency is usually a long‐period dynamic system, its seismic response is likely to be amplified in earthquakes with strong long‐period wave components, such as near‐fault ground motions. Seismic isolators with variable mechanical properties may provide a promising solution to alleviate this problem. To this end, in this work sliding isolators with variable curvature (SIVC) were studied experimentally. An SIVC isolator is similar to a friction pendulum system (FPS) isolator, except that its sliding surface has variable curvature rather being spherical. As a result, the SIVC's isolation stiffness that is proportional to the curvature becomes a function of the isolator displacement. By appropriately designing the geometry of the sliding surface, the SIVC is able to possess favorable hysteretic behavior. In order to prove the applicability of the SIVC concept, several prototype SIVC isolators, whose sliding surfaces are defined by a sixth‐order polynomial function, were fabricated and tested in this study. A cyclic element test on the prototype SIVC isolators and a shaking table test on an SIVC isolated steel frame were all conducted. The results of both tests have verified that the prototype SIVC isolators do indeed have the hysteretic property of variable stiffness as prescribed by the derived formulas in this study. Moreover, it is also demonstrated that the proposed SIVC is able to effectively reduce the isolator drift in a near‐fault earthquake with strong long‐period components, as compared with that of an FPS system with the same friction coefficient. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
999.
对甘肃武山县鸳鸯镇鸳鸯玉的地球化学特征和宝石学特征进行的鉴定、分析和研究表明,鸳鸯玉是富镁铁的辉橄岩经岩浆期后多期热液的叠加蚀变(主要为蛇纹石化)形成的蛇纹岩;鸳鸯玉的主要矿物成分为蛇纹石,且多为叶蛇纹石,含有少量的透闪石、滑石、白云石,还有一定量的金属矿物,如磁铁矿、褐铁矿和水镍矿等。该玉石呈较深的灰绿色和墨绿色,质地细腻,可用于制作"夜光杯"和玉碗等工艺品。鸳鸯玉矿区交通方便,矿石开采成本低,是具有良好开发前景的玉石资源。  相似文献   
1000.
To understand deep groundwater flow systems and their interaction with CO2 emanated from magma at depth in a volcanic edifice, deep groundwater samples were collected from hot spring wells in the Aso volcanic area for hydrogen, oxygen and carbon isotope analyses and measurements of the stable carbon isotope ratios and concentrations of dissolved inorganic carbon (DIC). Relations between the stable carbon isotope ratio (δ13CDIC) and DIC concentrations of the sampled waters show that magma-derived CO2 mixed into the deep groundwater. Furthermore, groundwaters of deeper areas, except samples from fumarolic areas, show higher δ13CDIC values. The waters' stable hydrogen and oxygen isotope ratios (δD and δ18O) reflect the meteoric-water origin of that region's deep groundwater. A negative correlation was found between the altitude of the well bottom and the altitude of groundwater recharge as calculated using the equation of the recharge-water line and δD value. This applies especially in the Aso-dani area, where deeper groundwater correlates with higher recharge. Groundwater recharged at high altitude has higher δ13CDIC of than groundwater recharged at low altitude, strongly suggesting that magmatic CO2 is present to a much greater degree in deeper groundwater. These results indicate that magmatic CO2 mixes into deeper groundwater flowing nearer the magma conduit or chamber.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号