首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
大气科学   5篇
地球物理   10篇
地质学   1篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2011年   3篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
Regression-based statistical downscaling is a method broadly used to resolve the coarse spatial resolution of general circulation models. Nevertheless, the assessment of uncertainties linked with climatic variables is essential to climate impact studies. This study presents a procedure to characterize the uncertainty in regression-based statistical downscaling of daily precipitation and temperature over a highly vulnerable area (semiarid catchment) in the west of Iran, based on two downscaling models: a statistical downscaling model (SDSM) and an artificial neural network (ANN) model. Biases in mean, variance, and wet/dry spells are estimated for downscaled data using vigorous statistical tests for 30 years of observed and downscaled daily precipitation and temperature data taken from the National Center for Environmental Prediction reanalysis predictors for the years of 1961 to 1990. In the case of daily temperature, uncertainty is estimated by comparing monthly mean and variance of downscaled and observed daily data at a 95 % confidence level. In daily precipitation, downscaling uncertainties were evaluated from comparing monthly mean dry and wet spell lengths and their confidence intervals, cumulative frequency distributions of monthly mean of daily precipitation, and the distributions of monthly wet and dry days for observed and modeled daily precipitation. Results showed that uncertainty in downscaled precipitation is high, but simulation of daily temperature can reproduce extreme events accurately. Finally, this study shows that the SDSM is the most proficient model at reproducing various statistical characteristics of observed data at a 95 % confidence level, while the ANN model is the least capable in this respect. This study attempts to test uncertainties of regression-based statistical downscaling techniques in a semiarid area and therefore contributes to an improvement of the quality of predictions of climate change impact assessment in regions of this type.  相似文献   
12.
The coarse resolution soil moisture (SM) data from NASA SMAP mission have been steadily produced with the expected performance since April 2015. These coarse resolution observations could be downscaled to fine resolution using fine scale observations of SM sensitive quantities from existing satellite sensors. For operational users who need near-real-time (NRT) high resolution SM data, the downscaling approach should be feasible for operational implementation, requiring limited ancillary information and primarily depending on readily available satellite observations. Based on these principles, nine potential candidate downscaling schemes were selected for developing an optimal downscaling strategy. Using remotely sensed land surface temperature (LST) and enhanced vegetation index (EVI) observations, the optimal downscaling approach was tested for operational producing a NRT 1 km SM data product from SMAP. Comprehensive assessments on the 1 km SM product were conducted based on agreement statistics with in-situ SM measurements. Statistical results show that the accuracy of the original coarse spatial resolution SMAP SM product can be significantly improved by 8% by the downscaled 1 km SM. With respect to the in-situ measurements, the 1 km SM mapping capability developed here presents a clear advantage over the SMAP/Sentinel SM data product; and it also provides better data availability for users. This study suggests that a NRT 1 km SMAP SM data product could be routinely generated from SMAP at the centre for Satellite Applications and Research of NOAA NESDIS for operational users.  相似文献   
13.
H. Moradkhani 《水文研究》2014,28(26):6292-6308
In this study the impact of climate change on runoff extremes is investigated over the Pacific Northwest (PNW). This paper aims to address the question of how the runoff extremes change in the future compared to the historical time period, investigate the different behaviors of the regional climate models (RCMs) regarding the runoff extremes and assess the seasonal variations of runoff extremes. Hydrologic modeling is performed by the variable infiltration capacity (VIC) model at a 1/8° resolution and the model is driven by climate scenarios provided by the North American Regional Climate Change Assessment Program (NARCCAP) including nine regional climate model (RCM) simulations. Analysis is performed for both the historical (1971–2000) and future (2041–2070) time periods. Downscaling of the climate variables including precipitation, maximum and minimum temperature and wind speed is done using the quantile‐mapping (QM) approach. A spatial hierarchical Bayesian model is then developed to analyse the annual maximum runoff in different seasons for both historical and future time periods. The estimated spatial changes in extreme runoffs over the future period vary depending on the RCM driving the hydrologic model. The hierarchical Bayesian model characterizes the spatial variations in the marginal distributions of the General Extreme Value (GEV) parameters and the corresponding 100‐year return level runoffs. Results show an increase in the 100‐year return level runoffs for most regions in particular over the high elevation areas during winter. The Canadian portions of the study region reflect higher increases during spring. However, reduction of extreme events in several regions is projected during summer. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
14.
This paper investigates the impact of the Hungry Horse Dam on streamflow dynamics in the South Fork of the Flathead River, Montana, USA. To this end, pre- and post-dam periods of raw and naturalized streamflow data were analysed. Pettitt’s change point analysis indicated a significant change point in streamflow dynamics due to dam construction. Complexities in the pre- and post-dam periods were evaluated by sample and multi-scale entropy analyses, and the entropies of the post-dam period were found to be higher than those of the pre-dam period. Possible reasons for this, unrelated to the natural hydrological cycle caused by the dam, were analysed using wavelet analyses. The wavelet analyses showed a clear change in the phase relationship between precipitation and streamflow. Finally, weak positive trends found in the hydrological variables indicated the effects of human activities (e.g. dam construction). The results also revealed distorted lead times, which can improve the streamflow forecasts for different lead times.  相似文献   
15.
Ahmadalipour  Ali  Moradkhani  Hamid  Kumar  Mukesh 《Climatic change》2019,152(3-4):569-579
Climatic Change - Anthropogenic climate warming has increased the likelihood of extreme hot summers. To facilitate mitigation and adaptation planning, it is essential to quantify and synthesize...  相似文献   
16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号