首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   1篇
  国内免费   1篇
测绘学   1篇
大气科学   20篇
地球物理   48篇
地质学   65篇
海洋学   5篇
天文学   8篇
自然地理   13篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   11篇
  2017年   5篇
  2016年   9篇
  2015年   7篇
  2014年   6篇
  2013年   9篇
  2012年   8篇
  2011年   5篇
  2010年   8篇
  2009年   7篇
  2008年   9篇
  2007年   10篇
  2006年   15篇
  2005年   7篇
  2004年   5篇
  2003年   9篇
  2002年   4篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
101.
The mechanical efficiency of the biocementation process is directly related to the microstructural properties of the biocemented sand, such as the volume fraction of calcite, its distribution within the pore space, coordination number, contact surface area, and types of contact. In the present work, some of these microscopic properties are computed, from 3D images obtained by X-ray tomography of biocemented sand. These properties are then used as an input in current analytical models to estimate the elastic properties (Young and shear moduli) and the strength properties (Coulomb cohesion). For the elastic properties, the analytical estimates (contact cement theory model) are compared with classical bounds, self-consistent estimate and numerical results obtained by direct computation (FEM computation) on the same 3D images. Concerning the cohesion, an analytical model initially developed to estimate the cohesion due to suction in unsaturated soils is modified to evaluate the macroscopic cohesion of biocemented sands. Such analytical model is calibrated on experimental data obtained from triaxial tests performed on the same biocemented sand. In overall, the presented results point out the important role of some microstructural parameters, notably those related to the contact, on such effective parameters.  相似文献   
102.
A Ground Penetrating Radar (GPR) survey has been carried out in Upper Jurassic limestones located on the eastern flank of the Paris Basin (NE France). The potential of the investigation method is assessed for delineating geologically meaningful stratifications in the shallow subsurface. The fundamentals of the GPR technique are described. Penetration depth and vertical resolution depends on the soil conditions, the characteristics of input signal and the configuration of the transmitter–receiver assembly. In the studied carbonates the penetration level is rather good and the electromagnetic signal reaches up to 1000 nanoseconds maximum (i.e. approximately 55 m). Several depositional units are outlined on the GPR profiles. Six different lithological units are recognised with distinct GPR reflection characteristics. The profiles illustrate the internal 3D organisation of the carbonate platform and its geometry. They provide detailed insight into the nature of an Oxfordian reefal build-up. The high-resolution subsurface model is directly calibrated with geological field observations and it results in a predictive 3D depositional working model. The GPR method is a non-destructive remote sensing technique that is cost effective. The method is considered complementary to other conventional high-resolution reservoir characterisation studies. It represents a powerful investigation tool in earth science studies concerning the imaging of the structure of the shallow subsurface.  相似文献   
103.
Although phytoliths, constituted mainly by micrometric opal, exhibit an important control on silicon cycle in superficial continental environments, their thermodynamic properties and reactivity in aqueous solution are still poorly known. In this work, we determined the solubility and dissolution rates of bamboo phytoliths collected in the Réunion Island and characterized their surface properties via electrophoretic measurements and potentiometric titrations in a wide range of pH. The solubility product of “soil” phytoliths ( at 25 °C) is equal to that of vitreous silica and is 17 times higher than that of quartz. Similarly, the enthalpy of phytoliths dissolution reaction is close to that of amorphous silica but is significantly lower than the enthalpy of quartz dissolution. Electrophoretic measurements yield isoelectric point pHIEP = 1.2 ± 0.1 and 2.5 ± 0.2 for “soil” (native) and “heated” (450 °C heating to remove organic matter) phytoliths, respectively. Surface acid-base titrations allowed generation of a 2-pK surface complexation model. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 2 ? pH ? 12, were found to be intermediate between those of quartz and vitreous silica. The dissolution rate dependence on pH was modeled within the concept of surface coordination theory using the equation:
  相似文献   
104.
The laser fluorination technique reported here for analyzing the oxygen isotope composition (δ18O) of fine quartz size fractions 50-20, 20-10, 10-5, 5-2, 2-1 and <1 μm has been validated by comparison with the ion microprobe technique. It yields accurate δ18O data with an external precision better than 0.15‰. This is a significant methodological improvement for isotopic studies dealing with materials such as soil or biogenic oxides and silicates: particles are often too small and recovered in insufficient amount to be easily handled for ion microprobe analysis. Both techniques were used to investigate δ18O composition of a Cretaceous quartzite and silcrete sequence from the South-East of France. Quartzite cements average 31.04 ± 1.93‰. They formed from Mid-Cretaceous seawater. Higher in the series, silcretes cements average 26.66 ± 1.36‰. They formed from Upper- or post-Upper-Cretaceous soil water and groundwater. Oxygen isotope data show that the silicification steps from one mineralogical phase to another and from one layer to another (including from an upper pedogenic silcrete to a lower groundwater silcrete) occurred in a closed or weakly evaporating hydrological system.  相似文献   
105.
Geophysical studies point to a complex tectonic and geodynamic evolution of the Alboran Basin and Gulf of Cadiz. Tomographic images show strong seismic waves velocity contrasts in the upper mantle. The...  相似文献   
106.
The polymorphic relations for Mg3(PO4)2 and Mg2PO4OH have been determined by reversed experiments in the temperature-pressure (T-P) range 500–1100 °C, 2–30 kbar. The phase transition between the low-pressure phase farringtonite and Mg3(PO4)2-II, the Mg analogue of sarcopside, is very pressure dependent and was tightly bracketed between 625 °C, 7 kbar and 850 °C, 9 kbar. The high-temperature, high-pressure polymorph, Mg3(PO4)2-III, is stable above 1050 °C at 10 kbar and above 900 °C at 30 kbar. The low-pressure stability of farringtonite is in keeping with its occurrence in meteorites. The presence of iron stabilizes the sarcopside-type phase towards lower P. From the five Mg2PO4OH polymorphs only althausite, holtedahlite, β-Mg2PO4OH (the hydroxyl analogue of wagnerite) and ɛ-Mg2PO4OH were encountered. Relatively speaking, holtedahlite is the low-temperature phase (<600 °C), ɛ-Mg2PO4OH the high-temperature, low-pressure phase and β-Mg2PO4OH the high-temperature, high-pressure phase, with an intervening stability field for althausite which extends from about 3 kbar at 500 °C to about 12 kbar at 800 °C. Althausite and holtedahlite are to be expected in F-free natural systems under most geological conditions; however, wagnerite is the most common Mg-phosphate mineral, implying that fluorine has a major effect in stabilizing the wagnerite structure. Coexisting althausite and holtedahlite from Modum, S. Norway, show that minor fluorine is strongly partitioned into althausite (KD F/OH≈ 4) and that holtedahlite may incorporate up to 4 wt% SiO2. Synthetic phosphoellenbergerite has a composition close to (Mg0.90.1)2Mg12P8O38H8.4. It is a high-pressure phase, which breaks down to Mg2PO4OH + Mg3(PO4)2 + H2O below 8.5 kbar at 650 °C, 22.5 kbar at 900 °C and 30 kbar at 975 °C. The stability field of the phosphate end-member of the ellenbergerite series extends therefore to much lower P and higher T than that of the silicate end-members (stable above 27 kbar and below ca. 725 °C). Thus the Si/P ratio of intermediate members of the series has a great barometric potential, especially in the Si-buffering assemblage with clinochlore + talc + kyanite + rutile + H2O. Application to zoned ellenbergerite crystals included in the Dora-Maira pyrope megablasts, western Alps, reveals that growth zoning is preserved at T as high as 700–725 °C. However, the record of attainment of the highest T and/or of decreasing P through P-rich rims (1 to 2 Si pfu) is only possible in the presence of an additional phosphate phase (OH-bearing or even OH-dominant wagnerite in these rocks), otherwise the trace amounts of P in the system remain sequestered in the core of Si-rich crystals (5 to 8 Si pfu) and can no longer react. Received: 7 April 1995 / Accepted: 12 November 1997  相似文献   
107.
We report results from axisymmetric deformation experiments carried out on forsterite aggregates in the deformation-DIA apparatus, at upper mantle pressures and temperatures (3.1–8.1 GPa, 1373–1673 K). We quantified the resulting lattice preferred orientations (LPO) and compare experimental observations with results from micromechanical modeling (viscoplastic second-order self-consistent model—SO). Up to 6 GPa (~185-km depth in the Earth), we observe a marked LPO consistent with a dominant slip in the (010) plane with one observation of a dominant [100] direction, suggesting that [100](010) slip system was strongly activated. At higher pressures (deeper depth), the LPO becomes less marked and more complex with no evidence of a dominant slip system, which we attribute to the activation of several concurrent slip systems. These results are consistent with the pressure-induced transition in the dominant slip system previously reported for olivine and forsterite. They are also consistent with the decrease in the seismic anisotropy amplitude observed in the Earth’s mantle at depth greater than ~200 km.  相似文献   
108.
Raman spectra were acquired on a series of natural and synthetic sulfide minerals, commonly found in enstatite meteorites: oldhamite (CaS), niningerite or keilite ((Mg,Fe)S), alabandite (MnS), troilite (FeS), and daubreelite (Cr2FeS4). Natural samples come from three enstatite chondrites, three aubrites, and one anomalous ungrouped enstatite meteorite. Synthetic samples range from pure endmembers (CaS, FeS, MgS) to complex solid solutions (Fe, Mg, Ca)S. The main Raman peaks are localized at 225, 285, 360, and 470 cm?1 for the Mg‐rich sulfides; at 185, 205, and 285 cm?1 for the Ca‐rich sulfides; at 250, 370, and 580 cm?1 for the Mn‐rich sulfides; at 255, 290, and 365 cm?1 for the Cr‐rich sulfides; and at 290 and 335 cm?1 for troilite with, occasionally, an extra peak at 240 cm?1. A peak at 160 cm?1 is present in all Raman spectra and cannot be used to discriminate between the different sulfide compositions. According to group theory, none of the cubic monosulfides oldhamite, niningerite, or alabandite should present first‐order Raman spectra because of their ideal rocksalt structure. The occurrence of broad Raman peaks is tentatively explained by local breaking of symmetry rules. Measurements compare well with the infrared frequencies calculated from first‐principles calculations. Raman spectra arise from activation of certain vibrational modes due to clustering in the solid solutions or to coupling with electronic transitions in semiconductor sulfides.  相似文献   
109.
A vital component of any seismic hazard analysis is a model for predicting the expected distribution of ground motions at a site due to possible earthquake scenarios. The limited nature of the datasets from which such models are derived gives rise to epistemic uncertainty in both the median estimates and the associated aleatory variability of these predictive equations. In order to capture this epistemic uncertainty in a seismic hazard analysis, more than one ground-motion prediction equation must be used, and the tool that is currently employed to combine multiple models is the logic tree. Candidate ground-motion models for a logic tree should be selected in order to obtain the smallest possible suite of equations that can capture the expected range of possible ground motions in the target region. This is achieved by starting from a comprehensive list of available equations and then applying criteria for rejecting those considered inappropriate in terms of quality, derivation or applicability. Once the final list of candidate models is established, adjustments must be applied to achieve parameter compatibility. Additional adjustments can also be applied to remove the effect of systematic differences between host and target regions. These procedures are applied to select and adjust ground-motion models for the analysis of seismic hazard at rock sites in West Central Europe. This region is chosen for illustrative purposes particularly because it highlights the issue of using ground-motion models derived from small magnitude earthquakes in the analysis of hazard due to much larger events. Some of the pitfalls of extrapolating ground-motion models from small to large magnitude earthquakes in low seismicity regions are discussed for the selected target region.  相似文献   
110.
Zn and Cd concentrations, stable lead isotopes and 210Pb-derived chronology were determined in a sediment core sampled at Sepetiba Bay (South-eastern Brazil). During the last decades, the bay’s watershed has been modified by the increase of industrial activities and human interventions. In particular, Zn and Cd ore treatment plants were built near the coast in 1960 and 1970, respectively, and water has been diverted from the adjacent Paraíba do Sul River watershed since 1950. The core collected at shallow depth near the industrial area exhibits four successive events: (i) at 50 cm depth, a change in the 206Pb/207Pb ratio from about 1.162 to more than 1.18 might be the result of the São Francisco Channel opening and water diversion from Paraíba do Sul river; (ii) at 40 cm depth, Zn concentration starts to increase (up to 0.8 mg g−1) (iii) above 30 cm depth, relatively high Cd concentrations (up to 1.6 μg g−1) are observed and (iv) at 16 cm depth, change in unsupported 210Pb slope is probably related to a waste dam built to prevent strong metal contamination in the bay. Sediment accumulation rates evaluated by Zn and Cd profiles used as time-markers are higher than those calculated from 210Pb-based chronology models. Using the constant initial concentration (CIC) model both events are supposed to date back to about 1884 and 1902, respectively, while using the constant rate of supply (CRS) model it shifts to about 1925 and 1935. Such discrepancies are probably assigned to the fact that these models do not take into account site-specific local sedimentation dynamics. In the study area, particles deposition seems to be controlled by enrichment with unsupported 210Pb transported by runoff from a mangrove flat bank. Chronology derived from a model that assumes an exponential increase of the initial 210Pb activity fits well with the estimated rates obtained from historical events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号