首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
地球物理   2篇
地质学   20篇
自然地理   4篇
  2021年   3篇
  2020年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
21.
Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to complexity of flyrock analysis. Existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict and control flyrock in blasting operation of Sangan iron mine, Iran incorporating rock properties and blast design parameters using artificial neural network (ANN) method. A three-layer feedforward back-propagation neural network having 13 hidden neurons with nine input parameters and one output parameter were trained using 192 experimental blast datasets. It was also observed that in ascending order, blastability index, charge per delay, hole diameter, stemming length, powder factor are the most effective parameters on the flyrock. Reducing charge per delay caused significant reduction in the flyrock from 165 to 25 m in the Sangan iron mine.  相似文献   
22.
Estimation of pillar stress is a crucial task in underground mining. This is used to determine pillar dimensions, room width, roof conditions, and general mine layout. There are several methods for estimating induced stresses due to underground excavations, i.e., empirical methods, numerical solutions, and currently artificial intelligence (AI). AI based techniques are gradually gaining popularity especially for problems involving uncertainty. In this paper, an attempt has been made to predict stresses developed in the pillars of bord and pillar mining using artificial neural network. A comparison has also been done to compare the obtained results with the boundary element method as well as measured field values. For this purpose, a multilayer perceptron neural network model was developed. A number of architectures with different hidden layers and neurons were tried to get the best solution, and the architecture 5-20-8-1 was found to be an optimum solution. Sensitivity analysis was also carried out to understand the influence of important input parameters on pillar stress concentration.  相似文献   
23.
Backbreak is an undesirable phenomenon in blasting operations. It can cause instability of mine walls, falling down of machinery, improper fragmentation, reduced efficiency of drilling, etc. The existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict backbreak in blasting operations of Soungun iron mine, Iran, incorporating rock properties and blast design parameters using the support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA). The coefficient of determination (CoD) and the mean absolute error (MAE) were taken as performance measures. It was found that the CoD between measured and predicted backbreak was 0.987 and 0.89 by SVM and MVRA, respectively, whereas the MAE was 0.29 and 1.07 by SVM and MVRA, respectively.  相似文献   
24.
Natural Resources Research - It is of a high importance to introduce intelligent systems for estimation and optimization of blasting-induced ground vibration because it is one the most unwanted...  相似文献   
25.
Prediction of vibration is very important in mining operations as well as civil engineering projects. In this paper, multi layer perceptron neural network (MLPNN), radial basis function neural network (RBFNN) and general regression neural network (GRNN) were utilized to predict ground vibration level in a Sarcheshmeh copper mine, Iran. It was observed that the MLPNN gives the best results. For this technique root mean square error and coefficient of correlation were found 0.03 and 0.954, respectively. Sensitivity analysis showed that distance from the blast, number of holes per delay and maximum charge per delay are the most effective parameters in making ground vibration in the blasting operation.  相似文献   
26.
In the blasting operation, risk of facing with undesirable environmental phenomena such as ground vibration, air blast, and flyrock is very high. Blasting pattern should properly be designed to achieve better fragmentation to guarantee the successfulness of the process. A good fragmentation means that the explosive energy has been applied in a right direction. However, many studies indicate that only 20–30 % of the available energy is actually utilized for rock fragmentation. Involvement of various effective parameters has made the problem complicated, advocating application of new approaches such as artificial intelligence-based techniques. In this paper, artificial neural network (ANN) method is used to predict rock fragmentation in the blasting operation of the Sungun copper mine, Iran. The predictive model is developed using eight and three input and output parameters, respectively. Trying various types of the networks, it was found that a trained model with back-propagation algorithm having architecture 8-15-8-3 is the optimum network. Also, performance comparison of the ANN modeling with that of the statistical method was confirmed robustness of the neural networks to predict rock fragmentation in the blasting operation. Finally, sensitivity analysis showed that the most influential parameters on fragmentation are powder factor, burden, and bench height.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号