首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   5篇
测绘学   1篇
大气科学   1篇
地球物理   22篇
地质学   44篇
海洋学   1篇
天文学   11篇
综合类   1篇
自然地理   6篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   7篇
  2018年   9篇
  2017年   9篇
  2016年   10篇
  2015年   3篇
  2014年   5篇
  2013年   9篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  1981年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
21.
22.
Climatic Change - By combining long-term ground-based data on water withdrawal with climate model projections, this study quantifies the compounding effects of human activities and climate change...  相似文献   
23.
The aim of this work is to understand the absence of objects along the orbits of Mimas and Enceladus in contrast to their presence at the orbits of neighbouring Tethys and Dione from the point of view of dynamical stability. Large scale numerical simulations of 360 test particles within the coorbital regions of these four saturnian satellites were carried out for 4×105 yr or 1.6×108 revolutions of the innermost moon Mimas. The tidal forcing of the satellites' orbits was not taken into account in these simulations. We have quantitatively reproduced the Mimas-Tethys 4:2 and Enceladus-Dione 2:1 mean motion resonances in the system and devised a scheme by which the parameter space of the coorbital resonance is sampled uniformly by our test particles. We observe that 6 out of the 36 integrated horseshoe particles of Enceladus escaped the coorbital region. All 54 tadpole particles remained stable. The main cause of instability for Enceladus coorbitals appears to be the overlap between the coorbital resonance and the 2:1 mean motion resonance between the particle and Dione. This leads particles with starting semimajor axes near the horseshoe-tadpole separatrix to be ejected from the resonance, as proposed by Morais [Morais, M.H.M., 2000. The effect of secular perturbations and mean motion resonances on trojan dynamics. Ph.D. thesis, Univ. of London], over timescales of ∼8×107 revolutions of Enceladus. For Mimas we observe a larger number of coorbital escapes overall, both of tadpole (7/54) and horseshoe (29/36) librators. An analysis of the observed dynamical evolution suggests a two-stage process at work: The semimajor axis of particles with starting conditions near the horseshoe-tadpole separatrix undergoes a slow random walk over timescales of 105 yr through a mechanism similar to that at Enceladus but involving the 4:2 inclination resonance with Tethys. These particles are eventually injected into a region of short-term (?104 yr) instability just inside the nominal boundary of stable, symmetric horseshoe motion. The presence of the 4:2 eccentricity triplet at that location is the most likely culprit for the instability. In both the cases of Mimas and Enceladus small-amplitude tadpoles remain stable until the end of the integration. The existence of fast escapers at Mimas provides a dynamical avenue for the short-term survival of impact ejecta in horseshoe orbits within Mimas' coorbital region.  相似文献   
24.
From August 2016 to July 2017, a passive seismic survey was conducted in South Western Iran as a part of a pilot project aimed to improve the imaging in geologically complex areas. Passive seismic methods have shown to be a useful tool to infer the physical properties of the underground geological structures where traditional hydrocarbon exploration methods are challenging. For this purpose, a dense passive seismic network consisting of 119 three-component borehole seismic stations was deployed over an area of 400 km2 around the city of Dehdasht. This paper focuses on the details of the network design, which was devoted to high-resolution seismological applications, including local earthquake tomography and seismic attenuation imaging. In this regard, we describe the instrument types and the station installation procedures used to obtain high-quality data that were used to retrieve three-dimensional models of P- and S-wave velocity and P-wave attenuation in the area using tomographic inversion techniques. We also assess the network performance in terms of the seismic ambient noise levels recorded at each station site, and we revise the horizontal orientation of the sensors using surface waves from teleseismic earthquakes.  相似文献   
25.
The cross section for a neutron-deuteron(nd) radiative capture is calculated using the pionless effective field theory including isospin symmetry breaking(ISB) corrections up to higher order.The triton is studied as a three-body bound state and one has to take into account various ISB effects,relativistic corrections and external electromagnetic currents.The isospin violation in nd radiative capture is improved compared to the one at NLO and N2LO.The cross section is determined to beσtot= [0.505 ± 0.003] mb up to N2LO.A satisfactory agreement between theory and experiment for the calculated cross section has been found by insertion of three-body forces and ISB effects.  相似文献   
26.
In this paper, we have developed a least-squares minimization method to estimate the depth of a buried conducting sphere using electromagnetic induction (EMI) data. This approach is basically based on the solving a set of algebraic linear equations to estimate the depth of sphere embedded in an insulating media. In electromagnetic induction method, the transmitter coil produces the incident magnetic and electric fields that obey the Maxwell’s equations. In the receiver coil, the received response is created in two modes—eddy-current mode (V ec) derived from the perfectly conductor placed in the shallow depth and another mode called current-channeling response (V cc) which depends on the conductivity of the medium. As expected, these responses differ depending on the direction of the incident field related to the receiver coil’s axis. In our case, the transmitter coil’s axis is parallel to the ground surface, and only the eddy-current response is measured in the receiver coil. The validity of this new method is demonstrated through studying and analyzing synthetic EMI anomalies, using simulated data generated from a known model with different random error components and a known statistical distribution.  相似文献   
27.
In this research, the hydraulic conductivity changes in uniformly graded sands, due to injection pressure increase, were experimentally evaluated using a cell-type radial model. Conducted tests, simulating variation of media permeability at different depths along a recharge well, were monitoring variations of the samples’ hydraulic conductivity at predetermined three different overburden pressures. The startup low pressure inflow was afterward altered by increasing the injection pressure up to the point at which hydraulic conductivity started to change at each run; we called it the threshold injection pressure. The corresponding hydraulic conductivity at such pressure was measured. As the increased permeability was a function of distance to the simulated recharge, it was deemed too beneficial to develop an equation to enable predicting this new hydraulic conductivity at different distances. Findings indicate that in uniformly graded sands under overburden pressure up to 68.64 kPa, the hydraulic conductivity in the threshold injection pressure—compared to its primary amount up to 45 cm from borehole wall—show a remarkable growth. However, this growth rate for greater distances up to 60 cm is negligible. Furthermore, in the threshold injection pressure, the hydraulic conductivity seems not to be time dependent. But, in constant injection pressures above the threshold injection pressure, the hydraulic conductivity shows some sort of time dependency.  相似文献   
28.
The installation of free falling jet grade control structures has become a popular choice for river bed stabilization. However, the formation and development of scour downstream of the structure may lead to failure of the structure itself. The current approaches to scour depth prediction are generally based on studies conducted with the absence of upward seepage. In the present study, the effects of upward seepage on the scour depth were investigated. A total of 78 tests without and with the application of upward seepage were carried out using three different sediment sizes, three different tailwater depths, four different flow discharges, and four different upward seepage flow discharge rates. In some tests, the three-dimensional components of the flow velocity within the scour hole were measured for both the cases with and without upward seepage. The scour depth measured for the no-seepage results compared well with the most accurate relationship found in the literature. It was found that generally the upward seepage reduced the downward velocity components near the bed, which led to a decrease in the maximum scour depth. A maximum scour depth reduction of 49% was found for a minimum tailwater depth, small sediment size, and high flow discharge. A decay of the downward velocity vector within the jet impingement was found due to the upward seepage flow velocity. The well known equation of D’Agostino and Ferro was modified to account for the effect of upward seepage, which satisfactorily predicted the experimental scour depth, with a reasonable average error of 10.7%.  相似文献   
29.
In this research, a parametric study is carried out on the effect of soil–structure interaction on the ductility and strength demand of buildings with embedded foundation. Both kinematic interaction (KI) and inertial interaction effects are considered. The sub‐structure method is used in which the structure is modeled by a simplified single degree of freedom system with idealized bilinear behavior. Besides, the soil sub‐structure is considered as a homogeneous half‐space and is modeled by a discrete model based on the concept of cone models. The foundation is modeled as a rigid cylinder embedded in the soil with different embedment ratios. The soil–structure system is then analyzed subjected to a suit of 24 selected accelerograms recorded on alluvium deposits. An extensive parametric study is performed for a wide range of the introduced non‐dimensional key parameters, which control the problem. It is concluded that foundation embedment may increase the structural demands for slender buildings especially for the case of relatively soft soils. However, the increase in ductility demands may not be significant for shallow foundations with embedment depth to radius of foundation ratios up to one. Comparing the results with and without inclusion of KI reveals that the rocking input motion due to KI plays the main role in this phenomenon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号