首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1169篇
  免费   71篇
  国内免费   39篇
测绘学   62篇
大气科学   63篇
地球物理   363篇
地质学   615篇
海洋学   52篇
天文学   51篇
综合类   14篇
自然地理   59篇
  2024年   4篇
  2023年   3篇
  2022年   45篇
  2021年   56篇
  2020年   64篇
  2019年   50篇
  2018年   119篇
  2017年   96篇
  2016年   125篇
  2015年   74篇
  2014年   99篇
  2013年   142篇
  2012年   67篇
  2011年   71篇
  2010年   45篇
  2009年   45篇
  2008年   29篇
  2007年   20篇
  2006年   24篇
  2005年   5篇
  2004年   16篇
  2003年   7篇
  2002年   6篇
  2001年   8篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   7篇
  1989年   3篇
  1988年   2篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1969年   1篇
排序方式: 共有1279条查询结果,搜索用时 15 毫秒
991.
Experience of previous earthquakes shows that a considerable portion of buildings reinforced with plain bars sustain relatively large damages especially at the beam–column joints where the damages are mostly caused by either diagonal shear cracks or intersectional cracks caused by bar slippage. While previous works mainly focus on shear failure mode, in this study, the emphasis is placed on slip based cracks as the dominant failure mode. A systematic procedure is introduced to predict the dominant failure mode at the joint which is based on the dimensional properties, reinforcement details, and axial and shear load at the joint. In addition, a relatively simple and efficient nonlinear model is proposed to simulate pre- and post-elastic behavior of the joints which fail under bar slippage mode. In this model, beam and column components are represented by linear elastic elements, dimensions of the joint panel are defined by rigid elements, and effect of slip is taken into account by a nonlinear rotational spring at the end of the beam. The proposed method is validated by experimental results for both internal and external joints .  相似文献   
992.
Rapid magnitude estimation relations for earthquake early warning systems in the Alborz region have been developed based on the initial first seconds of the P-wave arrival. For this purpose, a total of 717 accelerograms recorded by the Building and Housing Research Center in the Alborz region with the magnitude (Mw) range of 4.8–6.5 in the period between 1995 and 2013 were employed. Average ground motion period (\( \tau_{\text{c}} \)) and peak displacement (\( P_{\text{d}} \)) in different time windows from the P-wave arrival were calculated, and their relation with magnitude was examined. Four earthquakes that were excluded from the analysis process were used to validate the results, and the estimated magnitudes were found to be in good agreement with the observed ones. The results show that using the proposed relations for the Alborz region, earthquake magnitude could be estimated with acceptable accuracy even after 1 s of the P-wave arrival.  相似文献   
993.
Water Resources - The lack of long term observed data is the main challenge in many simulation-based studies for identification of nutrient critical source areas (CSAs). This study explored the...  相似文献   
994.
Mesozoic rocks are extensively and excellently preserved in the western Indian shield in several basins. The Kachchh Mainland Basin (KMB), comprising six small sub‐basins, is the main repository of these sediments. Habo Dome Basin, situated in the easternmost part of KMB and largest among the six basins, hosts clastics of the Chari Formation of Jurassic age. The fluctuating transgressive–regressive facies cycle, developed during the Callovian and Late Early Oxfordian in the Habo Dome Basin, was mainly controlled by local tectonics and not by global eustatic fluctuations. Near magmatic relationships are displayed by various elements of the clastic rocks of Habo Dome Basin. Two litho‐chemical groups have been identified in Habo Dome Basin, which are cyclically repeated over entire lithostratigraphic sequence, indicating alternate pulses of sediment inputs from two different sources under palpitating tectonic conditions. Provenance indicator elements and their ratios coupled with source modeling indicate predominantly felsic source with basic and alkalic components. Integrated analysis of petrograhic and geochemical characteristics suggests two source terranes for these rocks: a granitoid source with significant basic volcanics (Banded Gneissic Complex) and a granite–gneissic source with minor alkaline volcanics (Nagarparkar Massif) lying to northeast and NNW respectively. The petrochemistry of Habo Dome clastics suggests their deposition in a fault controlled sink which was influenced by sea level changes. Drifting of the Indian plate resulted in the opening of series of rifted basins in the Kachchh Mainland during Late Triassic/Early Jurassic, which were closed later during collision of Indian plate with Eurasia at early Eocene. The Habo Dome Basin which opened up as a half graben in response to the initial stress regime, remained tectonically unstable until the cessation of pre and post collisional stress regimes.  相似文献   
995.

Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth’s temperature and consequently have led to changes in wind and wave regimes. The main effects of climate change on oceans are warming of the ocean water, melting of ice, acidification of ocean water, and change in the ocean currents. The main effects of climate change on coastal regions are change in the coast hydrodynamics, sea level rise, change in wave height, coastal erosion, coastal structure damage, food shortage, and storms. Due to the importance of waves in the coastal zone and its effect on erosion and sedimentation, it is necessary to study wave changes. In this study, the effect of climate change on wave specifications was evaluated in the southern coast of the Caspian Sea in Noshahr Port. To simulate wave parameters, the third generation spectral Simulating WAves Nearshore (SWAN) model was used. Wave modeling was carried out using the SWAN numerical model for two 30-yearly periods, including the control period (1984 to 2014) and the future period (2051 to 2080). For wave modeling in the control period, the European Center for Average Weather Forecast wind field was used, and for the future period, a downscaled wind field from Coordinated Regional Downscaling Experiment projection, which was sponsored by World Climate Research Programme, based on the most recent emission scenarios RCP2.6, RCP4.5, and RCP8.5, was used. The model results were calibrated and verified with buoy-recorded data. The effect of the climate change on the wave parameters was evaluated by studying the differences between the patterns in three scenarios and the control period. Results showed that the 30-year maximum significant wave height will increase because of climate change, and the wave direction will not change. In addition, the intensity of storms will increase in the future.

  相似文献   
996.
To investigate the hydrogeochemical characteristics of groundwater 23 shallow, 30 intermediate and 38 deep wells samples were collected from Sylhet district of Bangladesh, and analyzed for temperature, pH, Eh, EC,DO, DOC, Na^+, K^+, Ca2+, Mg2+, Cl^-, SO_42-, NO_3^-,HCO_3^-, SiO_2^-, Fe, Mn and As. Besides, 12 surface water samples from Surma and Kushiyara Rivers were also collected and analyzed to understand the influence into aquifers. Results revealed that, most of the groundwater samples are acidic in nature, and Na–HCO_3 is the dominant groundwater type. The mean value of temperature, EC,Na^+, K^+, Ca2+, Mg2+, Cl^-, NO_3^- and SO_42- were found within the range of permissible limits, while most of the samples exceeds the allowable limits of Fe, Mn and As concentrations. However, relatively higher concentration of Fe and Mn were found in deep water samples and reverse trend was found in case of As. The mean concentrations of As in shallow, intermediate and deep wells were 39.3, 25.3and 21.4 lg/L respectively, which varied from 0.03 to148 lg/L. From spatial distribution, it was found that Fe,Mn and As concentrations are high but patchy in northern,north-western, and south-western part of Sylhet region. The most influential geochemical process in study area were identified as silicate weathering, characterized by active cation exchange process and carbonate weathering, which thereby can enhance the elemental concentrations in groundwater. Pearson's correlation matrix, principal component analysis and cluster analysis were also employed to evaluate the controlling factors, and it was found that, both natural and anthropogenic sources were influencing the groundwater chemistry of the aquifers. However, surface water has no significant role to contaminate the aquifers,rather geogenic factors affecting the trace elemental contamination. Thus it is expected that, outcomes of this study will provide useful insights for future groundwater monitoring and management of the study area.  相似文献   
997.
The effectiveness of a rehabilitation method based on joint enlargement using prestressed steel angles to enhance the seismic behavior of damaged external reinforced concrete beam‐column joints was experimentally investigated. Three half‐scale joints having either non‐seismic or seismic reinforcement details were tested both before and after rehabilitation by applying lateral cyclic loading of increasing amplitudes. Two defects were considered for the two non‐seismic units, being the absence of transverse steel hoops and insufficient bond capacity of beam bottom steel reinforcing bars in the joint panel zone. The damaged specimens were rehabilitated by injecting epoxy grout into existing cracks and installing stiffened steel angles at the re‐entrant corners of the beam‐column joint, both above and below the beam, that were mounted and held in place using prestressed high‐tensile strength bars. The test results indicated that the seismic performance of the rehabilitated specimens in terms of strength, stiffness, and ductility was fully recovered and comparable with the performance of the seismically detailed specimen. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
998.
Variation in the seismic collapse fragility of reinforced concrete frame buildings predicted using different ground motion (GM) selection methods is investigated in this paper. To simulate the structural collapse, a fiber‐element modelling approach with path‐dependent cyclic nonlinear material models that account for concrete confinement and crushing, reinforcement buckling as well as low cycle fatigue is used. The adopted fiber analysis approach has been found to reliably predict the loss in vertical load carrying capacity of structural components in addition to the sidesway mode of collapse due to destabilizing P–Δ moments at large inelastic deflections. Multiple stripe analysis is performed by conducting response history analyses at various hazard levels to generate the collapse fragility curves. To select GMs at various hazard levels, two alternatives of uniform hazard spectrum (UHS), conditional mean spectrum (CMS) and generalized conditional intensity measure (GCIM) are used. Collapse analyses are repeated based on structural periods corresponding to initial un‐cracked stiffness and cracked stiffness of the frame members. A return period‐based intensity measure is then introduced and applied in estimating collapse fragility of frame buildings. In line with the results of previous research, it is shown that the choice of structural period significantly affects the collapse fragility predictions. Among the GM selection methods used in this study, GCIM and CMS methods predict similar collapse fragilities for the case study building investigated herein, and UHS provides the most conservative prediction of the collapse capacity, with approximately 40% smaller median collapse capacity compared to the CMS method. The results confirm that collapse probability prediction of buildings using UHS offers a higher level of conservatism in comparison to the other selection methods. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
999.
Groundwater is considered as the most important water resource, especially in arid and semi-arid regions, so it is crucial to impede this source of water to be contaminated. One of the most common methods to assess groundwater vulnerability is DRASTIC method. However, the subjectivity existing in defining DRASTIC weights and ratings as well as inadaptability of the parameters involved in this method with special geology, hydrogeology, land use and climatic conditions have urged researchers to modify this method. In this paper, a new method combining a special type of the neural networks called Self-Organizing Map (SOM) and the traditional DRASTIC model resulting in the hybrid SOM-DRASTIC model is applied to modify and improve DRASTIC Model. The traditional DRASTIC method holds a summation among all negative effects of different factors contributing to vulnerability, while the proposed hybrid method is able of classifying the groundwater vulnerability and deriving the real relation existing between the DRASTIC parameters as the inputs and the vulnerability class as the output of the method. The vulnerability assessment process was performed on the Zayandeh-Rud river basin aquifers in Iran. The SOM-DRASTIC identified the northern parts of the study area as the most vulnerable areas with a drastically fractured structure, while the traditional DRASTIC ranked the western parts as the most vulnerable regions with a high rate of net recharge. The results demonstrate that the proposed method can be used by managers and decision-makers as an alternative robust tool for vulnerability-based classification and land use planning.  相似文献   
1000.
The third-generation wave model, WAVEWATCH III, was employed to simulate bulk wave parameters in the Persian Gulf using three different wind sources: ERA-Interim, CCMP, and GFS-Analysis. Different formulations for whitecapping term and the energy transfer from wind to wave were used, namely the Tolman and Chalikov (J Phys Oceanogr 26:497–518, 1996), WAM cycle 4 (BJA and WAM4), and Ardhuin et al. (J Phys Oceanogr 40(9):1917–1941, 2010) (TEST405 and TEST451 parameterizations) source term packages. The obtained results from numerical simulations were compared to altimeter-derived significant wave heights and measured wave parameters at two stations in the northern part of the Persian Gulf through statistical indicators and the Taylor diagram. Comparison of the bulk wave parameters with measured values showed underestimation of wave height using all wind sources. However, the performance of the model was best when GFS-Analysis wind data were used. In general, when wind veering from southeast to northwest occurred, and wind speed was high during the rotation, the model underestimation of wave height was severe. Except for the Tolman and Chalikov (J Phys Oceanogr 26:497–518, 1996) source term package, which severely underestimated the bulk wave parameters during stormy condition, the performances of other formulations were practically similar. However, in terms of statistics, the Ardhuin et al. (J Phys Oceanogr 40(9):1917–1941, 2010) source terms with TEST405 parameterization were the most successful formulation in the Persian Gulf when compared to in situ and altimeter-derived observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号