首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1181篇
  免费   63篇
  国内免费   39篇
测绘学   62篇
大气科学   63篇
地球物理   363篇
地质学   615篇
海洋学   55篇
天文学   51篇
综合类   15篇
自然地理   59篇
  2024年   4篇
  2023年   3篇
  2022年   45篇
  2021年   58篇
  2020年   66篇
  2019年   50篇
  2018年   119篇
  2017年   96篇
  2016年   125篇
  2015年   74篇
  2014年   99篇
  2013年   142篇
  2012年   67篇
  2011年   71篇
  2010年   45篇
  2009年   45篇
  2008年   29篇
  2007年   20篇
  2006年   24篇
  2005年   5篇
  2004年   16篇
  2003年   7篇
  2002年   6篇
  2001年   8篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   7篇
  1989年   3篇
  1988年   2篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1969年   1篇
排序方式: 共有1283条查询结果,搜索用时 15 毫秒
31.
This paper revisits the phenomenon of dynamic soil‐structure interaction (SSI) with a probabilistic approach. For this purpose, a twofold objective is pursued. First, the effect of SSI on inelastic response of the structure is studied considering the prevailing uncertainties. Second, the consequence of practicing SSI provisions of the current seismic design codes on the structural performance is investigated in a probabilistic framework. The soil‐structure system is modeled by the sub‐structure method. The uncertainty in the properties of the soil and the structure is described by random variables that are input to this model. Monte Carlo sampling analysis is employed to compute the probability distribution of the ductility demand of the structure, which is selected as the metrics for the structural performance. In each sample, a randomly generated soil‐structure system is subjected to a randomly selected and scaled ground motion. To comprehensively model the uncertainty in the ground motion, a suite of 3269 records is employed. An extensive parametric study is conducted to cover a wide range of soil‐structure systems. The results reveal the probability that SSI increases the ductility demand of structures designed based on the conventional fixed‐based assumption but built on flexible soil in reality. The results also show it is highly probable that practicing SSI provisions of modern seismic codes increase the ductility demand of the structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
32.
In this study, we calculate accurate absolute locations for nearly 3,000 shallow earthquakes (≤20 km depth) that occurred from 1996 to 2010 in the Central Alborz region of northern Iran using a non-linear probabilistic relocation algorithm on a local scale. We aim to produce a consistent dataset with a realistic assessment of location errors using probabilistic hypocenter probability density functions. Our results indicate significant improvement in hypocenter locations and far less scattering than in the routine earthquake catalog. According to our results, 816 earthquakes have horizontal uncertainties in the 0.5–3.0 km range, and 981 earthquakes are relocated with focal-depth errors less than 3.0 km, even with a suboptimal network geometry. Earthquake relocated are tightly clustered in the eastern Tehran region and are mainly associated with active faults in the study area (the Mosha and Garmsar faults). Strong historical earthquakes have occurred along the Mosha and Garmsar faults, and the relocated earthquakes along these faults show clear north-dipping structures and align along east–west lineations, consistent with the predominant trend of faults within the study region. After event relocation, all seismicity lies in the upper 20 km of the crust, and no deep seismicity (>20 km depth) has been observed. In many circumstances, the seismicity at depth does not correlate with surface faulting, suggesting that the faulting at depth does not directly offset overlying sediments.  相似文献   
33.
Four bacterial isolates (two resistant and two sensitive to chromium) were isolated from soil contaminated with tannery effluents at Jajmau (Kanpur), India, and were identified by 16S rDNA gene sequencing as Stenotrophomonas maltophilia, Exiguobacterium sp., Pantoea sp., and Aeromonas sp. Biosorption of chromium by dried and living biomasses was determined in the resistant and sensitive isolates. The effect of pH, initial metal concentration, and contact time on biosorption was studied. At pH 2.5 the living biomass of chromium resistant isolate Exiguobacterium sp. ZM‐2 biosorbed maximum amount of Cr6+ (29.8 mg/g) whereas the dried biomass of this isolate biosorbed 20.1 mg/g at an initial concentration of 100 mg/L. In case of chromate sensitive isolates, much difference was not observed in biosorption capacities between their dried and living biomasses. The maximum biosorption of Cr3+ was observed at pH 4.5. However, biosorption was identical in resistant and sensitive isolates. The data on chromium biosorption were analyzed using Langmuir and Freundlich isotherm model. The biosorption data of Cr6+ and Cr3+ from aqueous solution were better fitted in Langmuir isotherm model compared to Freundlich isotherm model. Metal recovery through desorption was observed better with dried biomasses compared to the living biomasses for both types of chromium ions. Bioaccumulation of chromate was found higher in chromate resistant isolates compared to the chromate sensitive isolates. Transmission electron microscopy confirmed the accumulation of chromium in cytoplasm in the resistant isolates.  相似文献   
34.
Receiver functions are widely employed to detect P-to-S converted waves and are especially useful to image seismic discontinuities in the crust. In this study we used the P receiver function technique to investigate the velocity structure of the crust beneath the Northwest Zagros and Central Iran and map out the lateral variation of the Moho boundary within this area. Our dataset includes teleseismic data (M b ≥ 5.5, epicentral distance from 30° to 95°) recorded at 12 three-component short-period stations of Kermanshah, Isfahan and Yazd telemetry seismic networks. Our results obtained from P receiver functions indicate clear Ps conversions at the Moho boundary. The Moho depths were firstly estimated from the delay time of the Moho converted phase relative to the direct P wave beneath each network. Then, we used the P receiver function inversion to find the properties of the Moho discontinuity such as depth and velocity contrast. Our results obtained from PRF are in good agreement with those obtained from the P receiver function modeling. We found an average Moho depth of about 42 km beneath the Northwest Zagros increasing toward the Sanandaj-Sirjan Metamorphic Zone and reaches 51 km, where two crusts (Zagros and Central Iran) are assumed to be superposed. The Moho depth decreases toward the Urmieh-Dokhtar Cenozoic volcanic belt and reaches 43 km beneath this area. We found a relatively flat Moho beneath the Central Iran where, the average crustal thickness is about 42 km. Our P receiver function modeling revealed a shear wave velocity of 3.6 km/s in the crust of Northwest Zagros and Central Iran increasing to 4.5 km/s beneath the Moho boundary. The average shear wave velocity in the crust of UDMA as SSZ is 3.6 km/s, which reaches to 4.0 km/s while in SSZ increases to 4.3 km/s beneath the Moho.  相似文献   
35.
Groundwater arsenic (As) presents a public health risk of great magnitude in densely populated Asian delta regions, most acutely in the Bengal Basin (West Bengal, India and Bangladesh). Research has focused on the sources, mobilisation, and heterogeneity of groundwater As, but a consistent explanation of As distribution from local to basin scale remains elusive. We show for the Bengal Aquifer System that the numerous, discontinuous silt‐clay layers together with surface topography impose a hierarchical pattern of groundwater flow, which constrains As penetration into the aquifer and controls its redistribution towards discharge zones, where it is re‐sequestered to solid phases. This is particularly so for the discrete periods of As release to groundwater in the shallow subsurface associated with sea level high‐stand conditions of Quaternary inter‐glacial periods. We propose a hypothesis concerning groundwater flow ( S ilt‐clay layers I mpose H ierarchical groundwater flow patterns constraining A rsenic progression [SIHA]), which links consensus views on the As source and history of sedimentation in the basin to the variety of spatial and depth distributions of groundwater As reported in the literature. SIHA reconciles apparent inconsistencies between independent, in some cases contrasting, field observations. We infer that lithological and topographic controls on groundwater flow, inherent to SIHA, apply more generally to deltaic aquifers elsewhere. The analysis suggests that groundwater As may persist in the aquifers of Asian deltas over thousands of years, but in certain regions, particularly at deeper levels, As will not exceed low background concentrations unless groundwater flow systems are short‐circuited by excessive pumping.  相似文献   
36.
Arsenotrophic bacteria contribute to the nutrient cycling in arsenic (As) affected groundwater. This study employed a culture‐independent and ‐dependent investigation of arsenotrophic microbiomes in As affected groundwater samples collected from Madhabpur, Sonatengra, and Union Porishod in Singair Upazila, Manikganj, Bangladesh. Total As contents, detected by Atomic Absorption Spectrophotometry (AAS) of the samples, were 47 µg/L (Madhabpur, SNGW‐1), 53 µg/L (Sonatengra, SNGW‐2), and 12 µg/L (Union porishod, SNGW‐3), whereas the control well (SNGW‐4; depths >150 m) showed As content of 6 µg/L. Denaturing Gradient Gel Electrophoresis (DGGE) analysis of the amplified 16S rRNA gene from As‐affected groundwater samples revealed the dominance of aerobic bacteria Pseudomonas within heterogeneous bacterial populations. DGGE of heterotrophic enrichments supplemented with arsenite [As (III)] for 4 weeks showed the dominance of Chryseobacterium, Flavobacterium, and Aquabacterium, whereas the dominant genera in that of autotrophic enrichments were Aeromonas, Acinetobacter, and Pseudomonas. Cultured bacteria retrieved from both autotrophic and heterotrophic enrichments were distinguished into nine genotypes belonging to Chryseobacterium, Acinetobacter, Escherichia, Pseudomonas, Stenotrophomonas, Janibacter, Staphylococcus, and Bacillus. They exhibited varying range of As(III) tolerance from 4 to 27 mM. As(III) transformation potential was confirmed within the isolates with oxidation rate as high as 0.143 mM/h for Pseudomonas sp. Sn 28. The arsenotrophic microbiome specifies their potential role in groundwater As‐cycling and their genetic information provide the scientific basis for As‐bioremediation.  相似文献   
37.
Numerical studies have been conducted for low- and medium-rise rocking structures to investigate their efficiency as earthquake-resisting systems in comparison with conventional structures. Several non-linear time-history analyses have been performed to evaluate seismic performance of selected cases at desired ground shaking levels, based on key parameters such as total and flexural story drifts and residual deformations. The Far-field record set is selected as input ground motions and median peak values of key parameters are taken as best estimates of system response. In addition, in order to evaluate the probability of exceeding relevant damage states, analytical fragility curves have been developed based on the results of the incremental dynamic analysis procedure. Small exceedance probabilities and acceptable margins against collapse, together with minor associated damages in main structural members, can be considered as superior seismic performance for medium-rise rocking systems. Low-rise rocking systems could provide significant performance improvement over their conventional counterparts notwithstanding certain weaknesses in their seismic response.  相似文献   
38.
Tracer breakthrough curves provide valuable information about the traced media, especially in inherently heterogeneous karst aquifers. In order to study the effect of variations in hydraulic gradient and conduit systems on breakthrough curves, a bench scale karst model was constructed. The bench scale karst model contains both matrix and a conduit. Eight tracing tests were conducted under a wide range of hydraulic gradients from 1 to greater than 5 for branchwork and network-conduit systems. Sampling points at varying distances from the injection point were utilized. Results demonstrate that mean tracer velocities, tracer mass recovery and linear rising slope of the breakthrough curves were directly controlled by hydraulic gradient. As hydraulic gradient increased, both one half the time for peak concentration and one fifth the time for peak concentration decreased. The results demonstrate the variations in one half the time for peak concentration and one fifth the time for peak concentration of the descending limb for different sampling points under differing hydraulic gradients are mainly controlled by the interactions of advection with dispersion. The results are discussed from three perspectives: different conduit systems, different hydraulic-gradient conditions, and different sampling points. The research confirmed the undeniable role of hydrogeological setting (i.e., hydraulic gradient and conduit system) on the shape of the breakthrough curve. The extracted parameters (mobile-fluid velocity, tracer-mass recovery, linear rising limb, one half the time for peak concentration, and one fifth the time for peak concentration) allow for differentiating hydrogeological settings and enhance interpretations the tracing tests in karst aquifers.  相似文献   
39.
40.
Transient Capture Zone for a Single Well   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号