首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   2篇
大气科学   4篇
地球物理   34篇
地质学   25篇
海洋学   22篇
天文学   23篇
自然地理   14篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   9篇
  2007年   8篇
  2006年   8篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1976年   2篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
51.
To understand the generation and evolution of mafic magmas from Klyuchevskoy volcano in the Kamchatka arc, which is one of the most active arc volcanoes on Earth, a petrological and geochemical study was carried out on time-series samples from the volcano. The eruptive products show significant variations in their whole-rock compositions (52.0–55.5 wt.% SiO2), and they have been divided into high-Mg basalts and high-Al andesites. In the high-Mg basalts, lower-K and higher-K primitive samples (>9 wt.% MgO) are present, and their petrological features indicate that they may represent primary or near-primary magmas. Slab-derived fluids that induced generation of the lower-K basaltic magmas were less enriched in melt component than those associated with the higher-K basaltic magmas, and the fluids are likely to have been released from the subducting slab at shallower levels for the lower-K basaltic magmas than for higher-K basaltic magmas. Analyses using multicomponent thermodynamics indicates that the lower-K primary magma was generated by ~13% melting of a source mantle with ~0.7 wt.% H2O at 1245–1260?°C and ~1.9 GPa. During most of the evolution of the volcano, the lower-K basaltic magmas were dominant; the higher-K primitive magma first appeared in AD 1932. In AD 1937–1938, both the lower-K and higher-K primitive magmas erupted, which implies that the two types of primary magmas were present simultaneously and independently beneath the volcano. The higher-K basaltic magmas evolved progressively into high-Al andesite magmas in a magma chamber in the middle crust from AD 1932 to ~AD 1960. Since then, relatively primitive magma has been injected continuously into the magma chamber, which has resulted in the systematic increase of the MgO contents of erupted materials with ages from ~AD 1960 to present.  相似文献   
52.
The chemical zoning profile in metamorphic minerals is often used to deduce the pressure–temperature (PT) history of rock. However, it remains difficult to restore detailed paths from zoned minerals because thermobarometric evaluation of metamorphic conditions involves several uncertainties, including measurement errors and geological noise. We propose a new stochastic framework for estimating precise PT paths from a chemical zoning structure using the Markov random field (MRF) model, which is a type of Bayesian stochastic method that is often applied to image analysis. The continuity of pressure and temperature during mineral growth is incorporated by Gaussian Markov chains as prior probabilities in order to apply the MRF model to the PT path inversion. The most probable PT path can be obtained by maximizing the posterior probability of the sequential set of P and T given the observed compositions of zoned minerals. Synthetic PT inversion tests were conducted in order to investigate the effectiveness and validity of the proposed model from zoned Mg–Fe–Ca garnet in the divariant KNCFMASH system. In the present study, the steepest descent method was implemented in order to maximize the posterior probability using the Markov chain Monte Carlo algorithm. The proposed method successfully reproduced the detailed shape of the synthetic PT path by eliminating appropriately the statistical compositional noises without operator’s subjectivity and prior knowledge. It was also used to simultaneously evaluate the uncertainty of pressure, temperature, and mineral compositions for all measurement points. The MRF method may have potential to deal with several geological uncertainties, which cause cumbersome systematic errors, by its Bayesian approach and flexible formalism, so that it comprises potentially powerful tools for various inverse problems in petrology.  相似文献   
53.
Morphological properties of the corona and coronal structures, and modifications occurring in a time span greater than 3 hours were investigated through image analysis of three successive color pictures obtained by the Multi-station International Coronal Experiment (MICE). The model of Saito and Akasofu (1987) for the general magnetic field of the Sun was a suitable framework for interpreting the observational results. Color-index images allowed a closer inspection of the relationships between rays and underlying chromospheric activity. Besides the chromospheric active centres, the rays exhibited clear morphological alterations. Suggestions are presented for future observational efforts searching for slight morphological changes and tiny fluctuations in brightness and color-indices.  相似文献   
54.
Two new protoamphibole-type amphiboles with space group type Pnmn, have been found in nature: protoferro-anthophyllite (Fe0.80Mn0.20)2 (Fe0.98Mg0.02)5 (Si4O11)2(OH)2, and protomangano-ferro-anthophyllite, (Mn0.70Fe0.30)2 (Fe0.82Mg0.18)5 (Si4O11)2(OH)2. Protoferro-anthophyllite (PFA) occurs in pegmatites at both Gifu Prefecture, Japan and at Cheyenne Mountain, El Paso County, Colorado, USA. Protomangano-ferro-anthophyllite, (PMFA) occurs in pegmatites at Fukushima Prefecture and in a Mn mine at Tochigi Prefecture, Japan. Structure determinations of the two amphiboles show that both are isostructural with the synthetic fluorian-amphibole, protoamphibole (= protofluorian-lithian-anthophyllite). A calculation of the procrystal electron density distributions, the bond paths and the bond critical point properties of PFA, PMFA, grunerite and protoamphibole indicates that the M4 cation in these amphiboles is 4-coordinated. A calculation of the electron density distributions at the Becke3LYP/6-311G(2d,p) level for model silicate tetrahedra for these amphiboles and anthophyllite reveals that the value of the electron density at the bond critical points, ρ(r c ), for the SiO(nbr) bonds is larger, on average (0.93 e/Å3), than that for the SiO(br) bonds (0.90 e/Å3). The observed SiO bond lengths decrease linearly with increasing ρ(r c ) while the magnitudes of the curvatures of ρ(r c ) both perpendicular and parallel to the bonds and the Laplacian of ρ(r c ) each increases. These trends are associated with an increase in the electronegativity of the Si cation, a possible increase in the covalent character of the SiO bond and a tendency for SiO(nbr) bonds to be involved in wider OSiO angles than SiO(br) bonds. It is possible, if not likely, that protoanthophyllite has often been misidentified as anthophyllite.  相似文献   
55.
We deployed two profiling floats in the region south of the Kuroshio Extension in March 2000. Temperature and salinity profiles from a depth of 1500 × 104 Pa to the surface are reported every two and four weeks, respectively. The floats performed very well for first four months after deployment. Later they failed in surfacing for a few months when the sea surface temperature in the region was high. The salinity sensors seemed to suffer from some damage during their failure-in-surfacing period. Despite this trouble, the results clearly demonstrate that the profiling float is a very useful and cost-effective tool for physical oceanographic observation in the open sea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
56.
The performance of the “version 2” Global Imager (GLI) standard atmospheric correction algorithm, which includes empirical absorptive aerosol correction and sun glint correction, was evaluated using data collected with handheld above-water SIMBADA radiometers during 23 cruises of opportunity (research vessels, merchant ships), mostly in the North Atlantic and European seas. A number of 100 match-up data sets of GLI-derived and SIMBADA-measured normalized water-leaving radiance (nL W ) and aerosol optical thickness (AOT) were sorted out, using objective selection criteria, and analyzed. The Root-Mean-Square (RMS) difference between GLI and SIMBADA nL W was about 0.32 μW/cm2/nm/sr for the 412 nm band, showing improvement by 30% in RMS difference with respect to the conventional “version 1” GLI atmospheric correction algorithm, and the mean difference (or bias) was reduced significantly. For AOT, the RMS difference was 0.1 between GLI estimates and SIMBADA measurements and the bias was small (a few 0.01), but the ?ngstr?m exponent was systematically underestimated, by 0.4 on average, suggesting a potential GLI calibration offset in the near infrared. The nL W differences were not correlated to AOT, although performance was best in very clear conditions (AOT less than 0.05 in the 865 nm band). Despite the relatively large scatter between estimated and measured nL W , the derived chlorophyll-a concentration estimates, applying the same ratio algorithm (GLI OC4V4) to GLI and SIMBADA, were consistent and highly correlated in the range of 0.05–2 μg/l. The large variability in chlorophyll-a concentration estimate for clear clean water areas (e.g. with the concentration range lower than about 0.05 μg/l) turns out to be due to the nature of the “band ratio” based in-water algorithm.  相似文献   
57.
Eruptive products of the Shirataka volcano (0.9–0.7 Ma) in NE Japan are calc-alkaline andesite–dacite, and are divisible into six petrologic groups (G1–G6). Shirataka rocks possess mafic inclusions—basalt–basaltic andesite, except for G3 and G4. All rocks show mixing and mingling of the mafic and silicic end-members, with trends defined by hosts and inclusions divided into high-Cr and low-Cr types; both types coexist in G1, G2, and G5. Estimated mafic end-members are high-Cr (1120–1170°C, 48–51% SiO2, olv ± cpx ± plg) and low-Cr type magmas (49–52% SiO2, cpx ± plg) except for the Sr isotopic composition. In contrast, the silicic end-members of both types have similar petrologic features (790–840°C, 64–70% SiO2, hbl ± qtz ± px + plg). High-Cr type mafic and corresponding silicic end-members have lower 87Sr/86Sr ratios than the low-Cr ones in each group. The trace element model calculations suggest that the low-Cr type mafic end-member magma is produced through ca. 20% fractional crystallization (olv ± cpx ± plg) from the high-Cr type one with assimilation of granitoids (= 0.02–0.05). The silicic magmas are producible through <30% partial remelting of previously emplaced basaltic magma with assimilation of crustal components. The compositional difference between the low-K and medium-K basalts in the Shirataka volcano is mainly attributed to the different degrees of the effect of subduction derived fluid by dehydration of phlogopite. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
58.
A two layer model of an infinitely long channel, with one end closed, is applied to study the sub-tidal response to wind forcing of Puget Sound. The model uses a linear friction parameterization. Data show that the acceleration of current near the surface responds to the wind event almost instantaneously, however, acceleration tends to start decreasing at later times and eventually changes sign even though the wind blows in one direction throughout. Analysis of the model results show that when the forcing frequency is high, the phase lag between forcing and friction causes this phenomena, and as forcing frequency increases, phase lag between forcing and friction approaches /2. When the forcing frequency is low, phase lag between forcing and friction decreases almost linearly with forcing frequency and at extremely low frequency, they almost balance each other. Analysis of the model results show also that the amplitude of baroclinic pressure gradient increases rapidly as forcing frequency decreases and when the forcing frequency is low, the baroclinic pressure gradient becomes important. Effects of baroclinic pressure gradient propagate as a wave from the boundaries and it takes about one day to take effect at the point where the observations were made.  相似文献   
59.
The tectonic environment of Kyushu, Japan is affected both by the subduction of the Philippine Sea plate and by the extensional tectonics related to rifting of Okinawa Trough at the eastern margin of the Eurasia Plate. We found that the Sendai fault zone acts as a channel for concurrent eruption of oceanic island basalt (OIB)-type and island arc (IA)-type basaltic rocks, propagating west to east in the Sendai region of southern Kyushu. The location of the Sendai fault zone is likely to correspond to the left-lateral shear zone in southern Kyushu as inferred by GPS Earth Observation Network. A similar magmatic association is present in the Beppu–Shimabara (BS) graben system in central Kyushu. The associate magmas of OIB-type rocks in Kyushu can be classified into typical, EM II-like and their intermediate OIB-type magmas in addition to MORB-like OIB-type magma in 87Sr/86Sr–Nb/Y systematics. Typical OIB-type and intermediate OIB-type magmas are erupted within the Sendai fault zone and BS graben system, respectively. The former is characterized by highest Nb/Y but low 87Sr/86Sr similar to MORB-like OIB-type magma erupted in northern Kyushu and the latter has intermediate Nb/Y and 87Sr/86Sr between typical and EM II-like OIB-type magmas. Almost all the IA-type rocks within the Sendai fault zone are generated from parental IA-type magma in Kyushu and characterized by weak crustal assimilation, having the lowest 87Sr/86Sr similar to typical OIB-type magma but the highest 143Nd/144Nd of arc magmas in Kyushu. The ages of both types of basaltic rocks within the Sendai fault zone range from 1.6 to <0.01?Ma clearly younger than those of andesitic rocks on northern and southern outsides of the fault zone and become younger from west to east. Initial formation of the fault zone has been induced by the counterclockwise rotation of southern Kyushu during the last 2?Ma as well as the BS graben system. Kyushu has continued to be split into three parts by the Sendai fault zone and BS graben during the Quaternary; northern, central, and southern zones. Their initial formation ages are likely to be linked to the initial rifting age of the middle Okinawa Trough back-arc basin.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号