首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   5篇
  国内免费   3篇
测绘学   22篇
大气科学   24篇
地球物理   28篇
地质学   58篇
海洋学   8篇
天文学   32篇
自然地理   3篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   7篇
  2017年   13篇
  2016年   11篇
  2015年   2篇
  2014年   9篇
  2013年   14篇
  2012年   5篇
  2011年   8篇
  2010年   5篇
  2009年   9篇
  2008年   4篇
  2007年   8篇
  2006年   8篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1970年   3篇
  1966年   1篇
  1963年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有175条查询结果,搜索用时 187 毫秒
161.
Sonic detection and ranging (SODAR) systems are efficient and economical tool to probe the lower planetary boundary layer on a continuous basis. The lower atmospheric patterns (each depicting a different atmospheric condition) recorded by this system can prove to be extremely useful if classified and interpreted correctly. The manual identification of these SODAR patterns is a laborious task and requires considerable expertise. A connectionist system has already been developed by the authors to automate the process to some extent. In this letter, we enhance its generalization of performance, by incorporating feature extraction using the fast Fourier transform. The results are compared with that in earlier work to demonstrate its effectiveness.  相似文献   
162.
A relatively undeformed quartzite sample from the Weverton formation was experimentally deformed in plane strain at a temperature of 700° C, a confining pressure of 15 kb and a constant strain rate of 10−6/sec, in a modified Griggs apparatus. A comparison of the known experimental strain for the sample with that measured from deformed rutile needles within the quartz grains shows fairly close agreement between the two values. This confirms the validity of using the needles as intracrystalline strain markers. A comparison has been made of the microstructures and preferred orientations in the experimentally deformed sample and a naturally deformed sample of the same quartzite which has undergone the same strain. The experimentally deformed sample exhibits more inhomogeneous intragranular deformation and a “double funnel” pattern of c axes, while the naturally deformed sample exhibits more homogeneous intragranular deformation and a broad great circle girdle of c axes normal to the foliation and lineation.  相似文献   
163.
The motivation for considering distributed large scale dynamos in the solar context is reviewed in connection with the magnetic helicity constraint. Preliminary accounts of 3-dimensional direct numerical simulations (in spherical shell segments) and simulations of 2-dimensional mean field models (in spherical shells) are presented. Interesting similarities as well as some differences are noted. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
164.
New Giant Metre-Wave Radio Telescope (GMRT) observations of the five-component pulsar B1857−26 provide detailed insight into its pulse-sequence modulation phenomena for the first time. The outer conal components exhibit a 7.4-rotation period, longitude-stationary modulation. Several lines of evidence indicate a carousel circulation time     of about 147 stellar rotations, characteristic of a pattern with 20 beamlets. The pulsar nulls some 20 per cent of the time, usually for only a single pulse, and these nulls show no discernible order or periodicity. Finally, the pulsar's polarization-angle traverse raises interesting issues: if most of its emission comprises a single polarization mode, the full traverse exceeds 180°; or if both polarization modes are present, then the leading and the trailing halves of the profiles exhibit two different modes. In either case, the rotating-vector model fails to fit the polarization-angle traverse of the core component.  相似文献   
165.
166.
We report the first results on the determination of the ionization states of oxygen ions in the anomalous cosmic rays (ACR) from the measurements of their flux in the cosmic-ray experiment in Spacelab-3 (SL-3) mission of NASA flown at 350 km altitude during 29 April–6 May, 1985. The detectors used were specially prepared CR-39 plastics of very high sensitivity for recording tracks of ions withZ>2. The measured orbit averaged flux of ACR oxygen is (2.9±1.3)×10–4 particles m–2sr–1s–1 (MeV N–1) at an energy of 23 MeV N–1. We made an independent estimate of the expected ACR oxygen flux at SL-3 orbit from interplanetary data and compared this with the measured flux to infer the ionization states of ACR oxygen ions. The flux and energy spectra of ACR oxygen at 1 AU outside the magnetosphere is obtained from the data of Voyager-2, during the same epoch as the SL-3 flight, and using the measured radial intensity gradient of 15%/AU for ACR oxygen between 1–17 AU. We calculate the geomagnetic transmission factors for ACR oxygen ions of charge states O+1, O+2, etc., from the known cut-off rigidities in the world grid and using the SL-3 trajectories for 116 orbits in the 6-day mission to obtain the expected flux at SL-3 for different charge states. When these flux values are compared with our measured flux, the averge ionization state of ACR oxygen ions in the energy interval of 20–26 MeV N–1 is obtained as O+1.  相似文献   
167.
The mass distribution of planets has been obtained on the basis of accretional theory of their formation recently developed by the author. The results agree fairly well with the observations.  相似文献   
168.
Folding at upper crustal levels occurs by bending of beds and flexural slip between beds. As a fold's interlimb angle decreases, changes in bed thickness and limb rotation are accommodated by various mechanisms, depending on deformation conditions. In the elastico-frictional (EF) regime, cataclastic flow may be the dominant mechanism for fold tightening. The Canyon Range (CR) syncline, located in the Sevier belt of central Utah, shows this type of deformation. The fold involves three thick quartzite units, with slight lithological variations between them. Fold tightening took place in the EF regime (<2 km overburden) by cataclastic flow, involving collective movement on a distributed network of fractures and deformation zones (DZs) from the micro- to the outcrop-scale. In detail, the degree of cataclastic deformation varies significantly across the fold due to minor variations in initial bedding thickness, grain size, matrix composition, etc. A cooperative relationship exists across different scales, and the fracture networks result in a fracture shape fabric that is relatively homogeneous at the outcrop-scale.The initial outcrop scale fracture/DZ network geometry is a product of the growth and linking of micro-scale cataclasite zones, which in turn is controlled by primary lithological variations. Once a fracture network forms, the material behavior of the fractured rock is unlike that of the original rock, with sliding of fracture-bound blocks accomplishing ‘block-controlled’ cataclastic flow. Thus, initial lithological variations at the micro-scale largely control the final deformation behavior at the largest scale. During progressive fold tightening, additional factors regulate cataclastic flow, such as fracture/DZ reactivation or healing, during folding. Although initial lithological variations in different units may produce unique network geometries, each unit's behavior may also depend upon the behavior of adjacent units. In the CR syncline, during the initial stages of cataclastic flow, the inherent nature of each quartzite unit results in unit-specific fracture network geometries. As deformation progresses, unit-specific networks begin to interact with those in surrounding units, resulting in feedback mechanisms regulating the later stages of network development. Thus, the nature of cataclastic flow changes dramatically from the initial to the final stages of folding.  相似文献   
169.
Seasonal climate prediction for the Indian summer monsoon season is critical for strategic planning of the region. The mean features of the Indian summer monsoon and its variability, produced by versions of the ‘Florida State University Coupled Ocean-Atmosphere General Circulation Model’ (FSUCGCM) hindcasts, are investigated for the period 1987 to 2002. The coupled system has full global ocean and atmospheric models with coupled assimilation. Four member models were created by choosing different combinations of parameterizations of the physical processes in the atmospheric model component. Lower level wind flow patterns and rainfall associated with the summer monsoon season are examined from this fully coupled model seasonal integrations. By comparing with observations, the mean monsoon condition simulated by this coupled model for the June, July and August periods is seen to be reasonably realistic. The overall spatial low-level wind flow patterns and the precipitation distributions over the Indian continent and adjoining oceanic regions are comparable with the respective analyses. The anomalous below normal large-scale precipitation and the associated anomalous low-level wind circulation pattern for the summer monsoon season of 2002 was predicted by the model three months in advance. For the Indian summer monsoon, the ensemble mean is able to reproduce the mean features better compared to individual member models.  相似文献   
170.
In the Precambrian Singhbhum Craton of eastern India, newer dolerite dikes occur profusely with varying outcrop lengths. We have analysed the nature of their length-size and orientation distributions in relation to the theory of fractals. Two orientational sets of dikes (NW-SE and NE-SW) are present. Both the sets show strongly non-power-law size distributions, as reflected in non-linear variations in logarithmic space. We analyzed thousands of data, revealing that polynomial functions with a degree of 3 to 4 are the best representatives of the non-linear variations. Orientation analysis shows that the degree of dispersions from the mean trend tends to decrease with increasing dike length. The length-size distributions were studied by simulating fractures in physical models. Experimental fractures also show a non-power-law distribution, which grossly conforms to those of the dolerite dikes. This type of complex size distributions results from the combined effects of nucleation, propagation and coalescence of fractures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号