首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1716篇
  免费   52篇
  国内免费   4篇
测绘学   30篇
大气科学   89篇
地球物理   924篇
地质学   374篇
海洋学   15篇
天文学   302篇
综合类   3篇
自然地理   35篇
  2021年   21篇
  2020年   24篇
  2018年   42篇
  2017年   52篇
  2016年   65篇
  2015年   60篇
  2014年   70篇
  2013年   75篇
  2012年   30篇
  2011年   37篇
  2010年   52篇
  2009年   51篇
  2008年   41篇
  2007年   38篇
  2006年   33篇
  2005年   17篇
  2004年   26篇
  2003年   24篇
  2002年   30篇
  2001年   23篇
  2000年   22篇
  1999年   20篇
  1998年   27篇
  1996年   32篇
  1995年   22篇
  1994年   32篇
  1993年   28篇
  1992年   34篇
  1991年   23篇
  1990年   23篇
  1989年   20篇
  1988年   28篇
  1987年   25篇
  1986年   29篇
  1984年   28篇
  1983年   29篇
  1982年   34篇
  1981年   24篇
  1980年   22篇
  1979年   36篇
  1978年   28篇
  1977年   24篇
  1976年   17篇
  1975年   23篇
  1974年   23篇
  1973年   24篇
  1972年   25篇
  1971年   25篇
  1968年   19篇
  1967年   20篇
排序方式: 共有1772条查询结果,搜索用时 0 毫秒
311.
Planning Geotechnical Investigation Using ANFIS   总被引:2,自引:2,他引:0  
Engineering experience may be written in mathematical form by using adaptive network-based fuzzy inference system (ANFIS). In this article we propose a method to use engineering experience and build a model, which can be used as a systematic decision support tool for engineers dealing with new problems. Planning geotechnical investigations is based on experience, which are used to obtain optimal number of investigation points, field and laboratory tests. To achieve this objective we define minimum number of investigation points and several input parameters which could increase or decrease the number of investigation points. The expert’s evaluations were put in a table, from which we generate the basis of the system. The paper presents a concept for planning geotechnical investigation for buildings using ANFIS and practical examples show its usefulness.  相似文献   
312.
In this study a multi-tracer test with fluorescent tracers was combined with time series analyses of natural tracers to characterize the dynamics of the solute transport through different recharge pathways and to study hydraulic behaviour of a binary karst system under low-flow conditions. Fluorescent tracer testing included the introduction of uranine, amidorhodamine G, or naphthionate at three injection points. Sampling and monitoring took place at two karst springs (Malenščica, Unica) and at two underground rivers (Pivka, Rak) recharging the Unica River at the Polje of Planina, SW Slovenia. Other monitored parameters included precipitation, spring or underground river discharge, water temperature, and electrical conductivity. Water samples were collected and analyzed for total organic carbon, Mg2+, SO4 2−, and NO3 in the laboratory. In the study area, results of the tracer test suggest that contaminant transport in karst may be retarded for several weeks during low-flow conditions followed by increases in contaminant concentrations after subsequent rainfall events. Based on interpretation of tracer concentration breakthrough curves, low apparent dominant flow velocities (i.e., between 5.8 and 22.8 m/h through the well developed karst conduits, and 3.6 m/h through the prevailing vadose zone with a dominant influence of a diffuse recharge) were obtained. Together with analyses of hydro-chemographs the artificial tracing identified different origins of water recharging the studied aquifer. During prolonged low-water conditions the Malenščica spring is mainly recharged from the karst aquifer and the Unica spring by the sinking Pivka River. After more intensive rainfall events allogenic recharge from Cerknica prevails in the Malenščica spring, while the Unica spring drains mainly the allogenic water from the Pivka Valley. These findings of alternating hydraulic connections and drainage areas due to respective hydrological conditions are important and should be considered when monitoring water quality, implementing groundwater protection measures, and optimizing future water exploitation.  相似文献   
313.
The paper presents 2D density and magnetic models of the crust and upper mantle along the DSS line profile of the CELEBRATION 2000 project that crosses the most important geological units in Central Europe. These are the Alps-Carpathians-Pannonian (ALCAPA) region, the SE part of the Paleozoic Platform (PLZ), the Trans-European Suture Zone (TESZ) and a fragment of the SW portion of the East European Craton (EEC). The density and magnetic models were constructed on the basis of a 2D model of P-wave velocity converted into density model, geological data as well as geothermal data and the results of integrated geophysical modelling for the lithosphere-asthenosphere boundary.  相似文献   
314.
We present a novel methodology for 3D gravity/magnetic data inversion. It combines two algorithms for preliminary separation of sources and an original approach to 3D inverse problem solution. The first algorithm is designed to separate sources in depth and to remove the shallow ones. It is based on subsequent upward and downward data continuation. For separation in the lateral sense, we approximate the given observed data by the field of several 3D line segments. For potential field data inversion we apply a new method of local corrections. The method is efficient and does not require trial-and-error forward modeling. It allows retrieving unknown 3D geometry of anomalous objects in terms of restricted bodies of arbitrary shape and contact surfaces. For restricted objects, we apply new integral equations of gravity and magnetic inverse problems. All steps of our methodology are demonstrated on the Kolarovo gravity anomaly in the Danube Basin of Slovakia.  相似文献   
315.
316.
317.
Surface sediments (fraction <63 μm) from the source to the mouth of the Rječina, short (18.3 km) karst allogenic river in Croatia, which is an important source of drinking water, were studied to investigate their mineral (by XRD) and chemical (by ICP-MS) composition to check possible anthropogenic influence at the lower course due to paper industry and mills, and in the prodelta area from untreated municipal sewage and the large harbor of Rijeka town. In all analyzed sediment samples and in the sandstone source, rock quartz is a major mineral, while feldspar and mica group minerals are less abundant. Chlorite is a minor or trace mineral in all samples. Calcite and dolomite are abundant in the river prodelta, reflecting changes in bedrock lithology from flysch to carbonates. In river sediments, Fe is the most abundantly analyzed element, while Ca is the most abundant in prodelta sediments. Concentrations of Al, Mn, Ni, Cr, Co, La and Nd decrease downstream, while Mg, S, Na, B, Pb, Zn, As, Sn, U, Mo, Hg and Ag have relatively higher concentration in prodelta sediments. The results are compared with sediments of other rivers in the area: Raša, Rižana and Dragonja, as well as with those of the Rosandra Creek (Italy). Sediments in the Raša River showed similar behavior as those in the Rječina, as the highest concentration of metals was found in the restricted upper part of the estuary, characterized by rapid deposition of clay particles and terrestrial sedimentary organic matter. The comparison also showed that the most contaminated were the sediments from the Rižana, followed by those from the Rječina and Rosandra Creek, which had similar results. Among the studied elements, As was present in all sediment samples at concentrations >6 ppm that might have the lowest toxic effects. At the lower Rječina and in prodelta sediments, Pb was also present at slightly elevated concentrations (>31 ppm) that could cause such effects. Concentrations of Zn in the prodelta correspond to those occurring in moderately polluted sediments (90–200 ppm). In the prodelta sediments, Hg is slightly below toxicity threshold (1 ppm), while Ag is present at toxicity threshold (0.5 ppm) or close to it. Rječina River could act as a good illustrative example for behavior of toxic metals in allogenic karstic rivers, in which accumulation of anthropogenically introduced pollutants usually occurs in their estuaries, as a result of transport and deposition of fine particles.  相似文献   
318.
Surfaces of phosphorite nodules and pebbles from the “Cambridge Green Sand” (Cenomanian, South England) yielded several discernible types of scratches. These originated before the burial of nodules/pebbles as evidenced by fossil epibiotic oysters cemented to cover the scratches. The individual forms of scratches differ in size and shape; therefore, the set of “scratching instruments” also had to be different. The scratches described differ from scratches generated by glacial processes, namely by the regularity of length and intervals, parallel orientation, existence of recurrent forms and placement along the nodule edges. We interpret the scratches as trace fossils of the ichnogenus Machichnus. Three new species, namely M. normani, M. harlandi and M. jeansi, are erected for them herein. The series of scratches originated probably by teeth on a couple of jaws; the makers possibly scraped bacterial or algal film off the surface of nodules that were covered with the phosphate gel. Both homodont and heterodont animals (probably fish) were involved.  相似文献   
319.
Biogeochemical processes were investigated in alpine river—Kamni?ka Bistrica River (North Slovenia), which represents an ideal natural laboratory for studying anthropogenic impacts in catchments with high weathering capacity. The Kamni?ka Bistrica River water chemistry is dominated by HCO3 ?, Ca2+ and Mg2+, and Ca2+/Mg2+ molar ratios indicate that calcite weathering is the major source of solutes to the river system. The Kamni?ka Bistrica River and its tributaries are oversaturated with respect to calcite and dolomite. pCO2 concentrations were on average up to 25 times over atmospheric values. δ13CDIC values ranged from ?12.7 to ?2.7 ‰, controlled by biogeochemical processes in the catchment and within the stream; carbonate dissolution is the most important biogeochemical process affecting carbon isotopes in the upstream portions of the catchment, while carbonate dissolution and organic matter degradation control carbon isotope signatures downstream. Contributions of DIC from various biogeochemical processes were determined using steady state equations for different sampling seasons at the mouth of the Kamni?ka Bistrica River; results indicate that: (1) 1.9–2.2 % of DIC came from exchange with atmospheric CO2, (2) 0–27.5 % of DIC came from degradation of organic matter, (3) 25.4–41.5 % of DIC came from dissolution of carbonates and (4) 33–85 % of DIC came from tributaries. δ15N values of nitrate ranged from ?5.2 ‰ at the headwater spring to 9.8 ‰ in the lower reaches. Higher δ15N values in the lower reaches of the river suggest anthropogenic pollution from agricultural activity. Based on seasonal and longitudinal changes of chemical and isotopic indicators of carbon and nitrogen in Kamni?ka Bistrica River, it can be concluded that seasonal changes are observed (higher concentrations are detected at low discharge conditions) and it turns from pristine alpine river to anthropogenic influenced river in central flow.  相似文献   
320.
Stable carbon and oxygen isotope values from single bryozoan colonies were used to reconstruct the paleoenvironments of the Early to Middle Miocene (Ottnangian to Badenian) sediments of the Central Paratethys. This approach utilizes a locally abundant allochem while avoiding matrix and multiple allochem contamination from bulk rock samples. Bryozoan colonies (and a few foraminifera and rock matrix samples) from 14 localities yielded 399 carbon and oxygen isotope values. Data from six of the localities (15 % of the total number of samples) were interpreted as having been diagenetically altered and were rejected. The remaining data indicate a primarily localized upwelling signal with lesser variation caused by global climatic and regional tectonic forcing of sea level, salinity, and temperature. Paleotemperatures were calculated to range from 12 to 21 °C. Despite potential taxonomic and diagenetic problems, bryozoan colonies are a powerful, underutilized source of paleoenvironmental carbon and oxygen isotope data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号