首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   639篇
  免费   23篇
  国内免费   1篇
测绘学   16篇
大气科学   26篇
地球物理   255篇
地质学   145篇
海洋学   3篇
天文学   199篇
自然地理   19篇
  2020年   9篇
  2019年   7篇
  2018年   10篇
  2017年   10篇
  2016年   34篇
  2015年   22篇
  2014年   37篇
  2013年   36篇
  2012年   13篇
  2011年   19篇
  2010年   11篇
  2009年   14篇
  2008年   9篇
  2007年   7篇
  2006年   16篇
  2005年   11篇
  2002年   6篇
  2000年   8篇
  1999年   9篇
  1998年   5篇
  1997年   8篇
  1996年   10篇
  1995年   11篇
  1994年   17篇
  1993年   9篇
  1992年   14篇
  1991年   13篇
  1990年   8篇
  1989年   17篇
  1988年   9篇
  1987年   17篇
  1986年   15篇
  1985年   11篇
  1984年   14篇
  1983年   12篇
  1982年   13篇
  1981年   16篇
  1980年   8篇
  1979年   8篇
  1978年   8篇
  1977年   7篇
  1976年   13篇
  1975年   8篇
  1973年   11篇
  1972年   7篇
  1971年   11篇
  1969年   6篇
  1968年   10篇
  1967年   9篇
  1963年   7篇
排序方式: 共有663条查询结果,搜索用时 643 毫秒
151.
The study deals with the theoretical approach to anthropoecological stabilization of landscape (ASL). It describes a method consisting of four stages including detailed differentiation from the viewpoint of aim, objectives of investigation, and means of evaluation and processing. Application of the method requires to provide: the preparatory, analytical ground — I. stage (analytical part), the structural — functional evaluation of the territory under solution — II. stage (analytical-synthetical part), the solution of ecooptimization relations and bonds by way of material and energy flows — III. stage (regulative part), the monitoring and signalling activities, determination of all-system biogeoindications — IV. stage (ensuring part).The results are exemplified by application to model territories in South Bohemia region.  相似文献   
152.
The dynamic flare of 6 November, 1980 (max 15:26 UT) developed a rich system of growing loops which could be followed in H for 1.5 hr. Throughout the flare, these loops, near the limb, were seen in emission against the disk. Theoretical computations of deviations from LTE populations for a hydrogen atom reveal that this requires electron densities in the loops close to, or in excess of 1012 cm -3. From measured widths of higher Balmer lines the density at the tops of the loops was found to be 4 x 1012 cm -3 if no non-thermal motions were present, or 5 × 1011 cm -3 for a turbulent velocity of ~ 12 km s -1.It is now general knowledge that flare loops are initially observed in X-rays and become visible in H only after cooling. For such a high density, a loop would cool through radiation from 107 to 104 K within a few minutes so that the dense H loops should have heights very close to the heights of the X-ray loops. This, however, contradicts the observations obtained by the HXIS and FCS instruments on board SMM which show the X-ray loops at much higher altitudes than the loops in H. Therefore, we suggest that the density must have been significantly lower when the loops were formed and that the flare loops were apparently both shrinking and increasing in density while cooling.NAS/NRC Research Associate, on leave from CNIE, Argentina.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. Partial support for the National Solar Observatory is provided by the USAF under a Memorandum of Understanding with the NSF.  相似文献   
153.
Rift‐related regional metamorphism of passive margins is usually difficult to observe on the surface, mainly due to its strong metamorphic overprint during the subsequent orogenic processes that cause its exposure. However, recognition of such a pre‐orogenic evolution is achievable by careful characterization of the polyphase tectono‐metamorphic record of the orogenic upper plate. A multidisciplinary approach, involving metamorphic petrology, P–T modelling, structural geology and in situ U‐Pb monazite geochronology using laser‐ablation split‐stream inductively coupled plasma mass spectrometry, was applied to unravel the polyphase tectono‐metamorphic record of metapelites at the western margin of the Teplá‐Barrandian domain in the Bohemian Massif. The study resulted in discovery of three tectono‐metamorphic events. The oldest event M1 is LP–HT regional metamorphism with a geothermal gradient between 30 and 50 °C km?1, peak temperatures up to 650 °C and of Cambro‐Ordovician age (c. 485 Ma). The M1 event was followed by M2‐D2, which is characterized by a Barrovian sequence of minerals from biotite to kyanite and a geothermal gradient of 20–25 °C km?1. D2‐M2 is associated with a vertical fabric S2 and was dated as Devonian (c. 375 Ma). Finally, the vertical fabric S2 was overprinted by a D3‐M3 event that formed sillimanite to chlorite bearing gently inclined fabric S3 also of Devonian age. The high geothermal gradient of the M1 event can be explained as the result of an extensional, rift‐related tectonic setting. In addition, restoration of the deep architecture and polarity of the extended domain before the Devonian history – together with the supracrustal sedimentary and magmatic record – lead us to propose a model for formation of an Ordovician passive continental margin. The subsequent Devonian evolution is interpreted as horizontal shortening of the passive margin at the beginning of Variscan convergence, followed by detachment‐accommodated exhumation of lower‐crustal rocks. Both Devonian shortening and detachment occurred in the upper plate of a Devonian subduction zone. The tectonic evolution presented in this article modifies previous models of the tectonic history of the western margin of the Teplá‐Barrandian domain, and also put constraints on the evolution of the southern margin of the Rheic ocean from the passive margin formation to the early phases of Variscan orogeny.  相似文献   
154.
Floods are an important geomorphic agent that accelerate sediment supply from bank failures. The quantitative proportions supplied by lateral inputs and the transport conditions of the channel can create local or extended accumulation zones within the channel reaches. These accumulation zones play an important role in the geomorphic regime of the stream. Knowledge of long‐term history of sediment supply is necessary to determine how these input and deposition forms developed. This study introduces a new approach for the quantification of past sediment supply via lateral erosion (incised banks and individual bank failures), using a case study of the confluence of three partial tributaries in the accumulation zone in the Outer Western Carpathians. For each tributary, as well as the channel reach downstream of the confluence zone, we calculated the mean of the largest bed particles and the unit stream power as indicators of transport capacity. We found that two of the tributaries supply significant amounts of sediment to the accumulation zone because of their higher unit stream power related to their higher transport potential, and observed coarser bed sediment. Seventy‐three bank failures with a total volume 395.5 m3 were mapped, and the sediment supply volume was dated using dendrogeomorphic analysis of 114 scarred tree roots (246 samples). The total volume of the dated sediment supply in the individual tributaries was 193.9 m3, whereas the volume of erosion in the accumulation zone was only 4.9 m3 for a period of approximately 30 years. The period represented by the dated tree roots included 12 years in which erosion events occurred and impacted the total sediment budget in the study area. Although sediment supply was greater than erosion in the accumulation zone, there are no present‐day signs of accretion. The rupture of a dam in an old pond (which is situated approximately 50 m below the accumulation zone) probably increased the transport conditions in the accumulation zone so that it balanced the high sediment supply from individual tributaries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
155.
In this contribution, we highlight the importance of in-situ monazite geochronology linked to P−T modelling for identification of timescales of metamorphic processes. Barrovian-type micaschists, migmatites and augengneiss from the Gumburanjun dome in the southeastern extremity of the Gianbul dome, NW Himalaya, have been studied in order to correlate the early stages of Himalayan metamorphism at different crustal levels and infer the timing of anatexis. P−T−t paths are constrained through combined pseudosection modelling and in-situ and in-mount monazite and xenotime laser ablation–split-stream inductively coupled plasma-mass spectrometry. Petrography and garnet zoning combined with pseudosection modelling show that garnet-staurolite schists record burial from ~530 to 560°C and 5.5 kbar to ~630 to 660°C and 7 kbar; staurolite-kyanite schists from ~530 to 560°C and 5 kbar to ~670 to 680°C and 7−9 kbar; and garnet-kyanite migmatites from 540−570°C and 5 kbar to ~680 to 750°C and 7−10 kbar, probably also to >750°C and >9 kbar above the muscovite stability field. The decompression paths of garnet-staurolite schists indicate cooling on decompression, while garnet rim chemistry and local sillimanite growth point to a stage of re-equilibration at ~600 to 670°C and 4−6 kbar in some of the staurolite-kyanite schists, and at ~670 to 700°C and 6 kbar in garnet-kyanite migmatites. Some of the staurolite-kyanite schists and garnet-kyanite migmatites also contain andalusite or andalusite-cordierite. Monazite and xenotime were analysed in thin sections in garnet, staurolite and kyanite, and in the matrix; and in mounts. BSE images and compositional maps of monazite (xenotime was too small) show variable internal structures from homogeneous through patchy zoning with embayed to sharp boundaries. Two groups of samples can be identified on the basis of the presence or absence of c. 44 − 37 Ma ages. The first group of samples—two garnet-staurolite schists—recorded only c. 31 − 27 Ma ages in porphyroblasts and no c. 40 Ma ages. The second group (samples of staurolite-kyanite schist, garnet-kyanite migmatites, augengneiss) have both the older, c. 44 − 37 Ma monazite ages in porphyroblasts and younger ages down to c. 22 Ma. These significantly different ranges of ages from porphyroblasts of 44−37 Ma, and 31−27 Ma, are interpreted as the duration of prograde P−T paths in Eocene and Oligocene, and indicate diachronous two-stage burial of rocks. Early migmatization occurred at 38 Ma. The c. 29 Ma is interpreted as the time when rocks from the lower and middle crustal levels were partially exhumed and came in to contact with rocks that were downgoing at this time. Localized monazite recrystallization is as young as 26−24 Ma. The youngest ages of 23−22 Ma are related to leucogranite emplacement.  相似文献   
156.
The formation of baseflow and stormflow was examined in the 1.18 km2 part of the headwater catchment Uhlí?ská, Jizera Mountains, Czech Republic, over the period 2007–2011, by means of run‐off data and environmental tracers 18O and SiO2. The baseflow, computed using the digital filter approach BFLOW, contributes 67% to total streamflow and has a mean residence time of 12.3 months. It is formed by groundwater discharge from the valley deluviofluvial granitic sediments, in combination with soil water in weathered layers on hillslopes during rainfall and snowmelt periods. The prevailing source of the groundwater is the infiltration of snowmelt water. Analysis of 20 run‐off events and their hysteretic patterns demonstrated that the stormflow water has a residence time of about 4 months and is generated by preferential flow on hillslopes combined by soil matrix drainage. Because of slower flow in the soil matrix, the enrichment of pore water in SiO2 is more pronounced. The stormflow and snowmelt water flowing via preferential pathways of upslope minerals soils pushes the pre‐event groundwater through the pathways in wetlands to the stream, and the wetland can be therefore considered as groundwater supplied. This mechanism has been found to be typical for the groundwater‐supplied headwater catchments of the Jizera Mountains and can be also assumed in other mountainous headwaters of the granitic massif in Central Europe. The main methodological contribution of this study are the residence time calculations stratified by baseflow and event flow, identifying run‐off components of different travel times to streams and linking them with geochemical run‐off sources. This achievement was possible because of a comprehensive dataset on hydrology, stable isotopes and silica hydrochemistry in all relevant run‐off generation components. This concept indicates that a possible long‐term change in snowmelt may affect the run‐off regime of headwater catchments to climate or land‐use changes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
157.
New petrographic and microstructural observations, mineral equilibria modelling and U/Pb (monazite) geochronological studies were carried out to investigate the relationships between deformation and metamorphism across the Rehamna massif (Moroccan Variscan belt). In this area, typical Barrovian (muscovite to staurolite) zones developed in Cambrian to Carboniferous metasedimentary rocks that are distributed around a dome‐like structure. First assemblages are characterized by the presence of locally preserved andalusite, followed by prograde evolution culminating at 6 kbar and 620 °C in the structurally deepest staurolite zone rocks. This Barrovian sequence was subsequently uplifted to supracrustal levels, heterogeneously reworked at greenschist facies conditions, which was followed locally by static growth of andalusite, indicating heating to 2.5–4 kbar and 530–570 °C. The 206Pb/238U monazite age of 298.3 ± 4.1 Ma is interpreted as minimum age of peak metamorphic conditions, whereas the ages of 275.8 ± 1.7 Ma and 277.0 ± 1.1 Ma date decompression and heating at low pressure, in agreement with previous dating of Permian granitoids intruding the Rehamna massif. The prograde metamorphism occurred during thickening and associated horizontal flow in the deeper crust (S1 horizontal schistosity). The horizontally disposed metamorphic zones were subsequently uplifted by a regional scale antiform during ongoing N–S compression. The re‐heating of the massif follows late massive E–W shortening, refolding and retrograde shearing of all previous fabrics coevally with regionally important intrusions of Permian granitoids. We argue that metamorphic evolution of the Rehamna massif occurred several hundred kilometres from the convergent plate boundaries in the interior of continental Gondwanan plate. The tectonometamorphic history of the Rehamna massif is put into Palaeozoic plate tectonic perspective and Late Carboniferous reactivation of (Devonian)–Early Carboniferous basins formed during stretching of the north Gondwana margin and formation of the Palaeotethys Ocean. The inherited heat budget of these magma‐rich basins plays a role in the preferential location of this intracontinental orogen. It is shown that rapid transition from lithospheric stretching to compression is characterized by specific HT type of Barrovian metamorphism, which markedly differs from similar Barrovian sequences along Palaeozoic plate boundaries reported from Variscan Europe.  相似文献   
158.
In a Barrovian metamorphic sequence, garnetiferous mica schists document a heterogeneously developed superposition of sub‐orthogonal fabrics and multiple garnet growth episodes. In the variably deformed domains, four types of garnet porphyroblasts have been defined based on inclusion trail patterns. Modelled garnet zoning in the MnNCKFMASHTO system indicates a prograde evolution from 4–4.5 kbar and 490–510 °C to 5–6 kbar and 520–550 °C in the earliest subhorizontal fabric progressing towards 6.5–7.5 kbar and 560–590 °C in the subsequent subvertical foliation. This fabric is heterogeneously deformed into a shallow‐dipping retrograde foliation associated with garnet resorption. In situ electron backscatter diffraction measurements of ilmenite inclusions in individual garnet grains yield precise data on included planar and linear elements. Consistent orientations of internal foliations, lineations and foliation intersection axis sets indicate a superposition of three sub‐orthogonal foliation systems. Weak variations of internal records with increasing intensity of deformation suggest that a moderate buckling stage occurred, but apparent lack of porphyroblast rotation is interpreted as a result of dominant passive flow. Coupling the orientation of internal fabric sets with P–T estimates is used to complement the tectono‐metamorphic evolution of the thickened crust. We demonstrate that garnet porphyroblasts preserve features which reflect large‐scale tectonic processes in orogens.  相似文献   
159.
160.
book review     
Z. Švestka 《Solar physics》1999,184(1):219-220
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号