首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   17篇
  国内免费   6篇
测绘学   18篇
大气科学   15篇
地球物理   89篇
地质学   251篇
海洋学   31篇
天文学   26篇
综合类   23篇
自然地理   19篇
  2023年   2篇
  2022年   11篇
  2021年   9篇
  2020年   17篇
  2019年   13篇
  2018年   26篇
  2017年   30篇
  2016年   28篇
  2015年   19篇
  2014年   31篇
  2013年   52篇
  2012年   26篇
  2011年   25篇
  2010年   19篇
  2009年   25篇
  2008年   12篇
  2007年   9篇
  2006年   14篇
  2005年   8篇
  2004年   10篇
  2003年   11篇
  2002年   8篇
  2001年   9篇
  2000年   2篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   7篇
  1991年   6篇
  1990年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1964年   1篇
  1960年   1篇
排序方式: 共有472条查询结果,搜索用时 31 毫秒
71.
The results of comprehensive field testing of on‐site vapor‐phase‐based groundwater monitoring methods are presented to demonstrate their utility as a robust and cost‐effective approach for rapidly obtaining volatile organic compounds (VOCs) concentration data from a monitoring well. These methods—which rely on sensitive, commercially available field equipment to analyze vapor in equilibrium with groundwater—proved easy to implement and can be tailored to site‐specific needs, including multilevel sampling. During field testing, low‐flow groundwater concentrations could be reasonably estimated using submerged passive vapor diffusion samplers or field equilibration of collected groundwater (R2 = 0.85 to 0.96). These two methods are not as reliant on in‐well mixing to overcome vertical stratification within wells as simpler headspace methods. The importance of well and aquifer‐specific factors on concentration data (and therefore method selection) is highlighted, including the effect of changing in‐well patterns due to seasonal temperature gradients. Results indicated that vertical stratification was relatively limited within the set of wells included in these studies, resulting in similar performance for short depth‐discrete passive vapor diffusion samplers (constructed from 40‐mL vials) and longer samplers (2.5 to 5 feet in length) designed to cover a larger portion of the screened interval. A year‐long, multi‐event evaluation demonstrated that vapor‐phase‐based monitoring methods are no more variable than conventional groundwater monitoring methods, with both types subject to similar spatial and temporal variability that can be difficult to reduce. Vapor sampling methods represent a promising approach for estimation of groundwater concentrations by reducing the cost liabilities associated with monitoring while providing a more sustainable approach.  相似文献   
72.
The present study reflects upon the results of substantial program of two-dimensional Finite Element Method (FEM) numerical analyses of the open pit that links to slope angle optimization associated with the safety factor of the pit slope of a coal mine in Bangladesh. In the present analyses, two types of models have been presented. The first model estimates safety factor without seismic effect on the overall pit slope of the model; the second model incorporates safety factor with seismic stability of the model. The calculated optimum slope angle of the first model is 31% with a rational safety factor of 1.51, prior to the seismic effect. However, the value is reduced to 0.93, 0.82, and 0.72, after we applies the seismic effect in the second model with M6, M6.5, and M7, respectively. Finally, our modeling results emphasize that for the case of the proposed Phulbari coalmine, there is extremely high prospect for causing massive slope failure along the optimum pit slope angle with 31% if the mine area felt seismic shaking, like the Sikkim (in northern India) earthquake with M6.9 on September 18, 2011.  相似文献   
73.
74.
75.
Retrospective understanding of the magnitude and pace of urban expansion is necessary for effective growth management in metropolitan regions. The objective of this paper is to quantify the spatial–temporal patterns of urban expansion in the Greater Kumasi Sub-Region (GKSR)—a functional region comprising eight administrative districts in Ghana, West Africa. The analysis is based on Landsat remote sensing images from 1986, 2001 and 2014 which were classified using supervised maximum likelihood algorithm in ERDAS IMAGINE. We computed three complementary growth indexes namely; Average Annual Urban Expansion Rate, Urban Expansion Intensity Index (UEII) and Urban Expansion Differentiation Index to estimate the amount and intensity of expansion over the 28-year period. Overall, urban expansion in the GKSR has been occurring at an average annual rate of 5.6 %. Consequently, the sub-region’s built-up land increased by 313 km2 from 88 km2 in 1986 to 400 km2 in 2014. The analysis further show that about 72 % of the total built-up land increase occurred in the last 13 years alone, with UEII value of 0.605 indicating a moderate intensity of urban expansion. Moreover, the metropolitan-core of the sub-region, being the focal point of urban development and the historical origins of expansion, accounted for more than half of the total built-up land increase over the 28-year period. Over the last decade and half however, urban expansion has spilled into the neighbouring peripheral districts, with the highest intensity and fastest rate of expansion occurring in districts located north and north east of the sub-regional core. We recommend a comprehensive regional growth management strategy grounded in effective strategic partnerships among the respective administrative districts to curb unsustainable urban expansion.  相似文献   
76.
This paper proposes a new Free-Lagrange method based on the kinetic Voronoi diagram for fluid simulation. The objective here is to combine the advantages of an adoptive mesh structure with the advantages of kinetic mesh maintenance, and demonstrate their value for dynamic simulation. Despite the theoretical advantages of the Free-Lagrange method, its use has been handicapped with the reconstruction of topology after each time step that considerably reduces the efficiency of the method. In addition, the use of fixed time steps causes problems such as overshoots and undetected collisions. In order to demonstrate the ability of the proposed model to solve these problems, the method is applied to a dam-breaking problem and global tides. With the results obtained from these numerical experiments, the validity of the global kinetic data structure is approved. In particular, the method is found to be more efficient than existing methods. In addition, qualitative comparison of physical results with analytical solutions demonstrates the similarity of the results and confirms the physical validity of the proposed method. Further investigations with real-world data and the complete equation of motion are suggested to compare it with other numerical methods.  相似文献   
77.
A three dimensional rectangular grid model is applied to resolve the temperature–salinity dynamics of Ruwais, a segment of the UAE coast which is well known as dense water formation zone. The model employs a heat flux module and a turbulence closure scheme that facilitate realistic calculation of temperature–salinity dynamics. A field survey campaign is carried out to support the modeling study, involving measurements of tide, currents, temperature, and salinity. Investigation is done for two meteorologically extreme conditions, i.e. summer and winter. The model study showed that the western flux develops an anticlockwise circulation in the study area. The water industrial discharges elevated the temperature and salinity of the water near the southeastern shoreline. This water mass propagated towards north under the influence of gravity.  相似文献   
78.
79.
Seismic site effect has been a major issue in the field of earthquake engineering due to the large local amplification of the seismic motion. This paper presents the importance of an appropriate soil behavior model to simulate earthquake site response and gives an overview of the field of site response analysis. Some of the well-known site response analysis methods are discussed. The objective of this paper is to investigate the influences of nonlinearity on the site response analysis by means of a more precise numerical model. In this respect, site responses of four different types of one-layered soil deposit, based on various shear wave velocities with the assumption of linear and rigid base bedrock, were analyzed by using the equivalent linear and fully nonlinear approaches. Nonlinear analyses?? results were compared with those of the linear method, and both of the similarities and differences are discussed. It is concluded that in the case of nonlinearity of soil under strong ground motions, 1-D equivalent linear modeling overestimates the amplification patterns in terms of absolute amplification level, and cannot correctly account for resonant frequencies and hysteric soil behavior. Therefore, more practical and appropriate numerical techniques for ground response analysis should be surveyed.  相似文献   
80.
Drought analysis in Jordan under current and future climates   总被引:2,自引:0,他引:2  
Droughts have adverse socioeconomic, agricultural, and environmental impacts that can be reduced by assessing and forecasting drought behavior. The paper presents detailed analyses of both meteorological and vegetative droughts over the period from 1970 to 2005. Standardized Precipitation Index (SPI) and Normalized Difference Vegetation Index (NDVI) have been used to quantify drought according to severity, magnitude and spatial distribution at the Hashemite Kingdom of Jordan. Results suggest that the country faced during the past 35 years frequent non-uniform drought periods in an irregular repetitive manner. Drought severity, magnitudes and life span increased with time from normal to extreme levels especially at last decade reaching magnitudes of more than 4. Generated NDVI maps spatial analyses estimate crop-area percentage damage due to severe and extremely severe drought events occurred during October, December, and February of 2000 to be about 10%, 45%, and 30%, respectively. In response to drought spatial extent, the paper suggest the presence of two drought types, local drought acting on one or more geographical climatic parts and national drought, of less common but more severe, that extend over the whole country. Droughts in Jordan act intensively during January, February and March and tend to shift position with time by alternative migrations from southern desert parts to northern desert parts and from the eastern desert parts to highlands and Jordan Rift Valley (JRV) at the west. The paper also investigates the potential use of Global Climate Model’s (GCM) to forecast future drought events from 2010 till 2040. Tukey HSD test indicates that ECHAM5OM GCM is capable to predicted rainfall variation at the country and suggests future droughts to become more intensive at the northern and southern desserts with 15% rainfall reduction factor, followed by 10% reduction at the JRV, and 5% at the highlands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号