首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   4篇
  国内免费   2篇
测绘学   3篇
大气科学   18篇
地球物理   40篇
地质学   60篇
海洋学   15篇
天文学   76篇
综合类   7篇
自然地理   19篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   9篇
  2017年   3篇
  2016年   10篇
  2015年   8篇
  2014年   14篇
  2013年   10篇
  2012年   5篇
  2011年   17篇
  2010年   8篇
  2009年   14篇
  2008年   17篇
  2007年   16篇
  2006年   8篇
  2005年   3篇
  2004年   4篇
  2003年   8篇
  2002年   10篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   11篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1986年   1篇
  1984年   1篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1974年   3篇
  1970年   1篇
排序方式: 共有238条查询结果,搜索用时 15 毫秒
111.
By analysing records made in the northern taiga forests of the Lapland Reserve (Kola Peninsula, Russia) during 1930–1998, we unexpectedly discovered a decline in the length of the snow-free and ice-free periods by 15–20 days due to both delayed spring and advanced autumn/winter. Respective seasonal temperatures best explained the dates of all phenological phases: 1 °C shift in temperature was approximately equal to 2–5 day shift in phenology. However the phenological shiftsduring the observation period are much larger than could be expected from the slight (0.56 °C) drop in temperatures during August–September, suggesting that the biotic effects of a very slight cooling have been enhanced by one or more unknown factors. Although emissions of sulphur dioxide from the nickel-copper smelter at Monchegorsk may have contributed to the observed trend (via changes in regional radiative budget), we found no evidence of direct pollution impact on dates of birch autumnal coloration or birch leaf fall, which exhibited the largest (22 days) shift between 1930 and 1998. The detected phenological trends agree with an increase in winter (snow) precipitation in the study area by 44%; however, effects of precipitation on any of the investigated phenological phases were far from significant. Our results highlight the importance of phenological records for the assessment of past regional environmental changes, and demonstrates that the prediction of even the simplest biotic responses to the Global Changes requires a profound understanding of the interactive impact of abiotic factors on the ecosystem.  相似文献   
112.
113.
Background insect herbivory, in addition to insect outbreaks, can have an important long term influence on the performance of tree species. Since a projected warmer climate may favour insect herbivores, we use a dynamic ecosystem model to investigate the impacts of background herbivory on vegetation growth and productivity, as well as distribution and associated changes in terrestrial ecosystems of northern Europe. We used the GUESS ecosystem modelling framework and a simple linear model for including the leaf area loss of Betula pubescens in relation to mean July temperature. We tested the sensitivity of the responses of the simulated ecosystems to different, but realistic, degrees of insect damage. Predicted temperature increases are likely to enhance the potential insect impacts on vegetation. The impacts are strongest in the eastern areas, where potential insect damage to B. pubescens can increase by 4–5%. The increase in insect damage to B. pubescens results in a reduction of total birch leaf area (LAI), total birch biomass and birch productivity (Net Primary Production). This effect is stronger than the insect damage to leaf area alone would suggest, due to its second order effect on the competition between tree species. The model's demonstration that background herbivory may cause changes in vegetation structure suggests that insect damage, generally neglected by vegetation models, can change predictions of future forest composition. Carbon fluxes and albedo are only slightly influenced by background insect herbivory, indicating that background insect damage is of minor importance for estimating the feedback of terrestrial ecosystems to climate change.  相似文献   
114.
The World Space Observatory Ultraviolet (WSO-UV) is the space mission that will grant access to the ultraviolet (UV) range in the post Hubble epoch. WSO-UV is equipped with instrumentation for imaging and spectroscopy and it is fully devoted to UV astronomy. In this article, we outline the WSO-UV mission model and present the current status of the project.  相似文献   
115.
The Earth’s most extensive biomes – the oceanic subtropical gyres – are considered to be expanding with current surface ocean warming. Although it is well established that microbial communities control gyre biogeochemistry, comparisons of their metabolic activities between gyres are limited. In order to estimate metabolic activities including production of microbial communities, the uptake rates of amino acids leucine, methionine and tyrosine at ambient concentrations were estimated in surface waters of the Atlantic Ocean using radioisotopically labelled tracers. Data were acquired during six research cruises covering main oceanic provinces herein termed: North and South Atlantic Gyres, Bermuda Atlantic Time-series Study site (BATS), Equatorial region, and Mauritanian Upwelling (off Cape Blanc). Data were divided between provinces, the extents of which were identified by ocean colour data, in order to achieve provincial mean uptake rates. Leucine and methionine uptake rates did not differ between sampling periods, and were comparable between the North and South subtropical gyres. Furthermore, variation in uptake rates measured throughout the two oligotrophic gyres, where sampling covered ∼4 × 106 km2, was considerably lower than that measured within the Mauritanian Upwelling and Equatorial regions, and even at the BATS site. Tyrosine was generally the slowest of the amino acids to be taken up, however, it was assimilated faster than methionine within the Mauritanian Upwelling region. Thus, we propose that one value for leucine (12.6 ± 3.2 pmol L−1 h−1) and methionine (10.0 ± 3.3 pmol L−1 h−1) uptake could be applied to the oligotrophic subtropical gyres of the Atlantic Ocean. However, with the significantly lower uptake rates observed at the BATS site, we would not advise extrapolation to the Sargasso Sea.  相似文献   
116.
We report chemical compositions (major and trace components including light hydrocarbons), hydrogen, oxygen, helium and nitrogen isotope ratios of volcanic and geothermal fluids of Mutnovsky volcano, Kamchatka. Several aspects of the geochemistry of fluids are discussed: chemical equilibria, mixing of fluids from different sources, evaluation of the parent magmatic gas composition and contributions to magmatic vapors of fluids from different reservoirs of the Kamchatkan subduction zone. Among reactive species, hydrogen and carbon monoxide in volcanic vapors are chemically equilibrated at temperatures >300°C with the SO2-H2S redox-pair. A metastable equilibrium between saturated and unsaturated light hydrocarbons is attained at close to discharge temperatures. Methane is disequilibrated. Three different sources of fluids from three fumarolic fields in the Mutnovsky craters can be distinguished: (1) magmatic gas from a large convecting magma body discharging through Active Funnel, a young crater with the hottest fumaroles (up to 620°C) contributing ~80% to the total volcanic gas output; (2) volcanic fluid from a separate shallow magma body beneath the Bottom Field of the main crater (96–280°C fumaroles); and (3) hydrothermal fluid with a high relative and absolute concentrations of CH4 from the Upper Field in the main crater (96–285°C fumaroles). The composition of the parent magmatic gas is estimated using water isotopes and correlations between He and other components in the Active Funnel gases. The He-Ar-N2 systematics of volcanic and hydrothermal fluids of Mutnovsky are consistent with a large slab-derived sedimentary nitrogen input for the nitrogen inventory, and we calculate that only ~1% of the magmatic N2 has a mantle origin and <<1% is derived from the arc crust.  相似文献   
117.
Modeling the bulk sediment XRD patterns allows insight into the environmental and depositional histories of two neighboring rift lake basins within the Baikal watershed. Parallel 14C-dated LGM-Holocene records in Lakes Baikal and Hovsgol are used to discuss the mineralogical signatures of regional climate change. In both basins, it is possible to distinguish ‘glacial’ and ‘interglacial’ mineral associations. Clay minerals comprise in excess of 50% of layered silicates in bulk sediment.The abundance of smectite (expandable) layers in mixed-layer illite–smectites and the total illite abundance are the main paleoclimatic indices in the clay mineral assemblage. Both indices exhibit coherent responses to the Bølling–Allerød and the Younger Dryas. The smectite layer index is not equivalent to the abundance of illite–smectite, because illite–smectite tends to transform into illite. Repeated wetting–drying cycles in soils and high abundance of expandable layers in illite–smectites (>42%) favor the process of illitization. This relationship is clearly shown in both Baikal and Hovsgol records for the first time. The opposite late Holocene trends in illite abundance in Lake Baikal and Lake Hovsgol records suggest that a sensitive optimal regime may exist for illite formation in the Baikal watershed with regard to warmth and effective moisture.The Lake Hovsgol sediments of the last glacial contain carbonates, suggesting a positive trend in the lake's water budget. A progressive change towards lower Mg content in carbonates indicates lowering mineralization of lake waters. This trend is consistent with the lithologic evidence for lake-level rise in the Hovsgol basin.The pattern of mineralogical changes during the past 20 ka is used to interpret bulk sediment and carbonate mineralogy of the long 81-m Lake Hovsgol drill core (HDP-04) with a basal age of 1 Ma. The interglacial-type silicate mineral associations are confined to several thin intervals; most of the sediment record is calcareous. Carbonates are represented by six main mineral phases: calcite, low-Mg calcite, intermediate/high-Mg calcite, dolomite, excess-Ca dolomite and metastable monohydrocalcite. These mineral phases tend to form stratigraphic successions indicative of progressive changes in lake water chemistry. Five sediment layers with abundant Mg-calcites in the HDP-04 section suggest deposition in a low standing lake with high mineralization (salinity) and high Mg/Ca ratios of lake waters. Lake Hovsgol sediments contain the oldest known monohydrocalcite, found tens of meters below lake bottom in sediments as old as 800 ka. This unusual find is likely due to the conditions favorable to preservation of this metastable carbonate.  相似文献   
118.
Tephra layers from archaeological sites in southern Italy and eastern Europe stratigraphically associated with cultural levels containing Early Upper Palaeolithic industry were analysed. The results confirm the occurrence of the Campanian Ignimbrite tephra (CI; ca. 40 cal ka BP) at Castelcivita Cave (southern Italy), Temnata Cave (Bulgaria) and in the Kostenki–Borshchevo area of the Russian Plain. This tephra, originated from the largest eruption of the Phlegrean Field caldera, represents the widest volcanic deposit and one of the most important temporal/stratigraphic markers of western Eurasia. At Paglicci Cave and lesser sites in the Apulia region we recognise a chemically and texturally different tephra, which lithologically, chronologically and chemically matches the physical and chemical characteristics of the Plinian eruption of Codola; a poorly known Late Pleistocene explosive event from the Neapolitan volcanoes, likely Somma–Vesuvius. For this latter, we propose a preliminary age estimate of ca. 33 cal ka BP and a correlation to the widespread C-10 marine tephra of the central Mediterranean. The stratigraphic position of both CI and Codola tephra layers at Castelcivita and Paglicci help date the first and the last documented appearance of Early Upper Palaeolithic industries of southern Italy to ca. 41–40 and 33 cal ka BP, respectively, or between two interstadial oscillations of the Monticchio pollen record – to which the CI and Codola tephras are physically correlated – corresponding to the Greenland interstadials 10–9 and 5. In eastern Europe, the stratigraphic and chronometric data seem to indicate an earlier appearance of the Early Upper Palaeolithic industries, which would predate of two millennia at least the overlying CI tephra. The tephrostratigraphic correlation indicates that in both regions the innovations connected with the so-called Early Upper Palaeolithic – encompassing subsistence strategy and stone tool technology – appeared and evolved during one of the most unstable climatic phases of the Last Glacial period. On this basis, the marked environmental unpredictability characterising this time-span is seen as a potential ecological factor involved in the cultural changes observed.  相似文献   
119.
A new survey of Mars Orbiter Camera (MOC) narrow-angle images of gullies in the 30°-45° S latitude band includes their distribution, morphology, local topographic setting, orientation, elevation, and slopes. These new data show that gully formation is favored over a specific range of conditions: elevation (−5000 to +3000 m), slope (>10°), and orientation (83.8% on pole-facing slopes). These data, and the frequent occurrence of gullies on isolated topographic highs, lead us to support the conclusion that climatic-related processes of volatile accumulation and melting driven by orbital variations are the most likely candidate for processes responsible for the geologically recent formation of martian gullies.  相似文献   
120.
Abstract— Dhofar 287 (Dho 287) is a new lunar meteorite, found in Oman on January 14, 2001. The main portion of this meteorite (Dho 287A) consists of a mare basalt, while a smaller portion of breccia (Dho 287B) is attached on the side. Dho 287A is only the fourth crystalline mare basalt meteorite found on Earth to date and is the subject of the present study. The basalt consists mainly of phenocrysts of olivine and pyroxene set in a finer‐grained matrix, which is composed of elongated pyroxene and plagioclase crystals radiating from a common nucleii. The majority of olivine and pyroxene grains are zoned, from core to rim, in terms of Fe and Mg. Accessory minerals include ilmenite, chromite, ulvöspinel, troilite, and FeNi metal. Chromite is invariably mantled by ulvöspinel. This rock is unusually rich in late‐stage mesostasis, composed largely of fayalite, Si‐K‐Ba‐rich glass, fluorapatite, and whitlockite. In texture and mineralogy, Dho 287A is a low‐Ti mare basalt, with similarities to Apollo 12 (A‐12) and Apollo 15 (A‐15) basalts. However, all plagioclase is now present as maskelynite, and its composition is atypical for known low‐Ti mare basalts. The Fe to Mn ratios of olivine and pyroxene, the presence of FeNi metal, and the bulk‐rock oxygen isotopic ratios, along with several other petrological features, are evidence for the lunar origin for this meteorite. Whole‐rock composition further confirms the similarity of Dho 287A with A‐12 and A‐15 samples but requires possible KREEP assimilation to account for its rare‐earth‐element (REE) contents. Cooling‐rate estimates, based on Fo zonation in olivine, yield values of 0.2–0.8°C/hr for the lava, typical for the center of a 10–20 m thick flow. The recalculated major‐element concentrations, after removing 10–15% modal olivine, are comparable to typical A‐15 mare basalts. Crystallization modeling of the recalculated Dho 287A bulk‐composition yields a reasonable fit between predicted and observed mineral abundances and compositions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号