全文获取类型
收费全文 | 243篇 |
免费 | 14篇 |
国内免费 | 4篇 |
专业分类
测绘学 | 3篇 |
大气科学 | 36篇 |
地球物理 | 59篇 |
地质学 | 84篇 |
海洋学 | 19篇 |
天文学 | 36篇 |
自然地理 | 24篇 |
出版年
2022年 | 3篇 |
2021年 | 8篇 |
2020年 | 6篇 |
2019年 | 7篇 |
2018年 | 13篇 |
2017年 | 11篇 |
2016年 | 16篇 |
2015年 | 8篇 |
2014年 | 16篇 |
2013年 | 19篇 |
2012年 | 21篇 |
2011年 | 13篇 |
2010年 | 12篇 |
2009年 | 14篇 |
2008年 | 9篇 |
2007年 | 14篇 |
2006年 | 11篇 |
2005年 | 10篇 |
2004年 | 9篇 |
2003年 | 3篇 |
2002年 | 3篇 |
2001年 | 4篇 |
2000年 | 5篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 6篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1991年 | 3篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1982年 | 4篇 |
1972年 | 1篇 |
排序方式: 共有261条查询结果,搜索用时 15 毫秒
151.
Michelle S. Thompson Thomas J. Zega Jane Y. Howe 《Meteoritics & planetary science》2017,52(3):413-427
We report the results of the first dynamic, in situ heating of lunar soils to simulate micrometeorite impacts on the lunar surface. We performed slow‐ and rapid‐heating experiments inside the transmission electron microscope to understand the chemical and microstructural changes in surface soils resulting from space‐weathering processes. Our slow‐heating experiments show that the formation of Fe nanoparticles begins at ~575 °C. These nanoparticles also form as a result of rapid‐heating experiments, and electron energy‐loss spectroscopy measurements indicate the Fe nanoparticles are composed entirely of Fe0, suggesting this simulation accurately mimics micrometeorite space‐weathering processes occurring on airless body surfaces. In addition to Fe nanoparticles, rapid‐heating experiments also formed vesiculated textures in the samples. Several grains were subjected to repeated thermal shocks, and the measured size distribution and number of Fe nanoparticles evolved with each subsequent heating event. These results provide insight into the formation and growth mechanisms for Fe nanoparticles in space‐weathered soils and could provide a new methodology for relative age dating of individual soil grains from within a sample population. 相似文献
152.
Alexandra Jones Eleanor Bruce Kevin P. Davies Michelle Blewitt Scott Sheehan 《The Australian geographer》2019,50(3):381-405
ABSTRACTSubmarine canyons play an important role in the regional distribution, abundance and dispersal of marine biota and are increasingly being recognised as geomorphic features of high conservation significance along Australia’s continental margin. Certain canyons have been described as foraging ‘hotspots’ attributable to the high abundance of apex cetacean species aggregating in these areas. Anecdotal evidence of large seasonal aggregations of killer whales in the Bremer Canyon, south-west Australia, has attracted significant research attention in the last decade. To identify important environmental drivers influencing aggregation patterns, a predictive spatial habitat model using the Maxent model was developed based on presence-only whale sighting data. In addition, remotely sensed sea surface temperature and chlorophyll-a concentrations were assessed to investigate the spatio-temporal variation in sea surface conditions. Habitat preference was predicted in areas between canyon heads, with the most influential predictor variables being depth and distance from the continental shelf break. Analysis of remote-sensing data highlighted low localised variability in surface waters and illustrated the seasonal trends of the Leeuwin Current. This study demonstrates the influence of bathymetry and submarine geomorphology on enhanced cetacean abundance and highlights the need for recognition of this potential foraging area in marine reserve planning. 相似文献
153.
Michelle S. Cho Felipe Solano Neil R. Thomson Michael G. Trefry Daniel R. Lester Guy Metcalfe 《Ground Water Monitoring & Remediation》2019,39(3):23-39
Chaotic advection is a novel approach that has the potential to enhance contact between an injected reagent and target contaminants, and thereby improve the effectiveness of in situ treatment technologies. One configuration that is capable of generating chaotic advection is termed the rotated potential mixing (RPM) flow. A conventional RPM flow system involves periodically reoriented dipole flow driven by transient switching of pressures at a series of radial wells. To determine whether chaotic advection can be engineered using such an RPM flow system, and to assess the consequent impact on the spatial distribution of a conservative tracer, a series of field-scale experiments were conducted. These experiments involved the injection of a tracer in the center of a circular array of wells followed by either mixing using an engineered RPM flow system to invoke chaotic advection, or by natural processes (advection and diffusion) as the control. Pressure fluctuations from the mixing tests using the RPM flow system showed consistent peak amplitudes during injection and extraction at a frequency corresponding to the switching time, suggesting that the target hydraulic behavior was achieved with the time-dependent flow field. The tracer breakthrough responses showed oscillatory behavior at all monitoring locations during the mixing tests which indicated that the desired RPM flow was generated. The presence of chaotic advection was supported by comparisons to observations from a previous laboratory experiment using RPM flow, and the Fourier spectrum of the temporal tracer data. Results from several quantitative metrics adopted to demonstrate field-scale evidence of chaotic advection showed that mixing led to improved lateral tracer spreading and approximately uniform concentrations across the monitoring network. The multiple lines of evidence assembled in this proof-of-concept study conclusively demonstrated that chaotic advection can be engineered at the field scale. This investigation is a critical step in the development of chaotic advection as a viable and efficient approach to enhance reagent delivery. 相似文献
154.
Li Li Mark A. Nearing Mary H. Nichols Viktor O. Polyakov Michelle L. Cavanaugh 《地球表面变化过程与地形》2020,45(2):484-495
Terrestrial LiDAR scanning (TLS) technology is widely used to detect terrain elevation changes. This study examines the potential use of terrestrial LiDAR to measure erosion on small experimental plots at high resolution. Multitemporal TLS scans were conducted at six positions around plots (12 m2) with three slope treatments through 11 simulated rainfall applications. Surface elevation changes were quantified by comparing scans between rainfall simulations, and elevation changes greater than the level of detection were used to obtain volumetric change estimations. Erosion mass was estimated both by using soil bulk density and the density of sediment collected in runoff, and then compared to the erosion estimated from the runoff samples. Results showed: (1) with the aid of fixed reference controls in the form of concrete target surfaces of varying roughness, registration accuracy was better than 1 mm and mean level of change detection was less than 2.2 mm; (2) the average absolute relative errors of TLS-estimated eroded mass ranged from 6.8% to 31.8%, with greater values on 5% slope; (3) the TLS-estimated erosion accuracy was affected by erosion magnitude, the utilized material density and number of scan positions, and a grid size of 10 mm was found to be appropriate for this scale to estimate the volumetric changes; (4) the number of scan positions could be reduced to three while not significantly impacting volumetric change estimations; and (5) elevating the scanner resulted in much better accuracy for eroded mass estimations. This study suggests that using LiDAR to monitor soil erosion at the plot scale is feasible, and provides guidance about the level of accuracy one might expect in doing so. © 2019 John Wiley & Sons, Ltd. 相似文献
155.
The impact of the MJO on clusters of wintertime circulation anomalies over the North American region 总被引:1,自引:2,他引:1
Emily E. Riddle Marshall B. Stoner Nathaniel C. Johnson Michelle L. L’Heureux Dan C. Collins Steven B. Feldstein 《Climate Dynamics》2013,40(7-8):1749-1766
Recent studies have shown that the Madden–Julian Oscillation (MJO) impacts the leading modes of intraseasonal variability in the northern hemisphere extratropics, providing a possible source of predictive skill over North America at intraseasonal timescales. We find that a k-means cluster analysis of mid-level geopotential height anomalies over the North American region identifies several wintertime cluster patterns whose probabilities are strongly modulated during and after MJO events, particularly during certain phases of the El Niño-Southern Oscillation (ENSO). We use a simple new optimization method for determining the number of clusters, k, and show that it results in a set of clusters which are robust to changes in the domain or time period examined. Several of the resulting cluster patterns resemble linear combinations of the Arctic Oscillation (AO) and the Pacific/North American (PNA) teleconnection pattern, but show even stronger responses to the MJO and ENSO than clusters based on the AO and PNA alone. A cluster resembling the positive (negative) PNA has elevated probabilities approximately 8–14 days following phase 6 (phase 3) of the MJO, while a negative AO-like cluster has elevated probabilities 10–20 days following phase 7 of the MJO. The observed relationships are relatively well reproduced in the 11-year daily reforecast dataset from the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). This study statistically links MJO activity in the tropics to common intraseasonal circulation anomalies over the North American sector, establishing a framework that may be useful for improving extended range forecasts over this region. 相似文献
156.
157.
William H. McDowell Miguel C. Leon Michelle D. Shattuck Jody D. Potter Tamara Heartsill-Scalley Grizelle González James B. Shanley Adam S. Wymore 《水文研究》2021,35(4):e14146
Catchments in the Luquillo Experimental Forest (LEF) of Puerto Rico are warm, wet and tropical with steep elevational relief creating gradients in temperature and rainfall. Long-term objectives of research at the site are to understand how changing climate and disturbance regimes alter hydrological and biogeochemical processes in the montane tropics and to provide information critical for managing and conserving tropical forest ecosystems globally. Measurements of hydrology and meteorology span decades, and currently include temperature, humidity, precipitation, cloud base level, throughfall, groundwater table elevation and stream discharge. The chemistry of rain, throughfall, and streams is measured weekly and lysimeters and wells are sampled monthly to quarterly. Multiple data sets document the effects of major hurricanes including Hugo (1989), Georges (1998) and Maria (2017) on vegetation, biota and catchment biogeochemistry and provide some of the longest available records of biogeochemical fluxes in tropical forests. Here we present an overview of the findings and the data sets that have been generated from the LEF, highlighting their importance for understanding montane tropical watersheds in the context of disturbance and global environmental change. 相似文献
158.
A Ricardian analysis of US and Canadian farmland 总被引:1,自引:0,他引:1
In this analysis, we undertake a comparative Ricardian analysis of agriculture between Canada and the United States. We find
that the climate responses of the two countries are similar but statistically different despite the fact that the two countries
are neighbors. Comparing the marginal impacts of climate change, we find that Canadian agriculture is unaffected by warmer
temperatures but would benefit from more precipitation. US farms are much more sensitive to higher temperatures and benefit
relatively less from increased precipitation. These marginal results were anticipated given that Canadian farms are generally
cooler and drier than American farms. 相似文献
159.
Climate change will affect future flow and thermal regimes of rivers. This will directly affect freshwater habitats and ecosystem health. In particular fish species, which are strongly adapted to a certain level of flow variability will be sensitive to future changes in flow regime. In addition, all freshwater fish species are exotherms, and increasing water temperatures will therefore directly affect fishes’ biochemical reaction rates and physiology. To assess climate change impacts on large-scale freshwater fish habitats we used a physically-based hydrological and water temperature modelling framework forced with an ensemble of climate model output. Future projections on global river flow and water temperature were used in combination with current spatial distributions of several fish species and their maximum thermal tolerances to explore impacts on fish habitats in different regions around the world. Results indicate that climate change will affect seasonal flow amplitudes, magnitude and timing of high and low flow events for large fractions of the global land surface area. Also, significant increases in both the frequency and magnitude of exceeding maximum temperature tolerances for selected fish species are found. Although the adaptive capacity of fish species to changing hydrologic regimes and rising water temperatures could be variable, our global results show that fish habitats are likely to change in the near future, and this is expected to affect species distributions. 相似文献
160.
Aurélie Genries Walter Finsinger Hans Asnong Yves Bergeron Christopher Carcaillet Michelle Garneau Christelle Hély Adam A. Ali 《第四纪科学杂志》2012,27(7):745-756
We analysed charcoal and pollen from sediments obtained from two lakes in the northwestern mixed‐wood Canadian boreal forest in order to reconstruct fire‐return intervals and vegetation dynamics over the last 8000 years. Sites were selected with contrasting soil properties (mesic versus dry‐sandy soils), allowing an estimation of the potential influence of soils on long‐term vegetation and fire dynamics. The sites likely experienced fewer fires during the period extending from 8000 to 4000 cal. a BP than over the last 4000 years. At both sites, eastern white pine (Pinus strobus) populations were most extensive shortly after deglaciation, with vegetation later shifting towards mixed woodlands with less P. strobus and more extensive Picea and Pinus banksiana populations. This gradual vegetation shift was probably induced by the establishment of colder and moister conditions along with a fire‐regime change. In spite of the parallel long‐term vegetation trajectories, vegetation composition differed between the two sites in both the past and present. Whereas Picea was more abundant at the mesic site, the fire‐adapted P. banksiana populations were more extensive at the sandy‐soil site. These differences in vegetation composition indicate that, in addition to climate changes and fire occurrence, soil properties also influenced vegetation dynamics. A likely increase in fire frequency in the Canadian boreal forest during the 21st century might therefore favour the expansion of these two disturbance‐adapted trees with spatial heterogeneity in the populations due to varying soil types. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献