首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   7篇
  国内免费   2篇
测绘学   9篇
大气科学   23篇
地球物理   88篇
地质学   183篇
海洋学   34篇
天文学   79篇
综合类   2篇
自然地理   52篇
  2021年   5篇
  2019年   8篇
  2018年   5篇
  2017年   7篇
  2016年   8篇
  2015年   7篇
  2014年   11篇
  2013年   26篇
  2012年   10篇
  2011年   15篇
  2010年   19篇
  2009年   21篇
  2008年   20篇
  2007年   16篇
  2006年   15篇
  2005年   18篇
  2004年   24篇
  2003年   9篇
  2002年   15篇
  2001年   5篇
  2000年   15篇
  1999年   5篇
  1998年   13篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   3篇
  1993年   5篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   8篇
  1988年   9篇
  1987年   13篇
  1986年   9篇
  1985年   6篇
  1984年   13篇
  1983年   9篇
  1982年   3篇
  1981年   4篇
  1980年   11篇
  1979年   4篇
  1978年   14篇
  1976年   2篇
  1974年   4篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1970年   4篇
  1912年   2篇
排序方式: 共有470条查询结果,搜索用时 15 毫秒
51.
Contourite drifts of alternating sand and mud, shaped by the Labrador Current, formed during the late Quaternary in Flemish Pass seaward of the Grand Banks of Newfoundland, Canada. The drifts preserve a record of Labrador Current flow variations through the last glacial maximum. A high-resolution seismic profile and a transect of four cores were collected across Beothuk drift on the southeast side of Flemish Pass. Downcore and lateral trends in grain size and sedimentation rate provide evidence that, between 16 and 13 ka, sediment was partitioned across Beothuk drift and the adjacent Flemish Pass floor by a strong current flow but, from 29 to 16 ka, sedimentation was more of a blanketing style, represented by draped reflections interpreted as being due to a weaker current. The data poorly resolve the low sedimentation rates since 13 ka, but the modern Labrador Current in Flemish Pass is the strongest it has been in at least the past 29 ka. Pre-29 ka current flow is interpreted based on reflection architecture in seismic profiles. A prominent drift on the southwestern side of Flemish Pass formed above a mid-Miocene erosion surface, but was buried by a mass-transport deposit after the penultimate glacial maximum and after drift deposition switched to eastern Flemish Pass. These findings illustrate the temporal complexity of drift sedimentation and provide the first detailed proxy for Labrador Current flow since the last glacial maximum.  相似文献   
52.
53.
Large areas of southern Australia and New Zealand are covered by mid‐Tertiary limestones formed in cool‐water, shelf environments. The generally destructive character of sea‐floor diagenesis in such settings precludes ubiquitous inorganic precipitation of carbonates, yet these limestones include occasional units with marine cements: (1) within rare in situ biomounds; (2) within some stacked, cross‐bedded sand bodies; (3) at the top of metre‐scale, subtidal, carbonate cycles; and (4) most commonly, associated with certain unconformities. The marine cements are dominated by isopachous rinds of fibrous to bladed spar, interstitial homogeneous micrite and interstitial micropeloidal micrite, often precipitated sequentially in that order. Internal sedimentation of microbioclastic micrite may occur at any stage. The paradox of marine‐cemented limestone units in an overall destructive cool‐water diagenetic regime may be explained by the precipitation of cement as intermediate Mg‐calcite from marine waters undersaturated with respect to aragonite. In some of the marine‐cemented limestones, aragonite biomoulds may include marine cement/sediment internally, suggesting that dissolution of aragonite can at times be wholly marine and not always involve meteoric influences. We suggest that marine cementation occurred preferentially, but not exclusively, during periods of relatively lowered sea level, probably glacio‐eustatically driven in the mid‐Tertiary. At times of reduced sea level, there was a relative increase in both the temperature and the carbonate saturation state of the shelf waters, and the locus of carbonate sedimentation shifted towards formerly deeper shelf sites, which now experienced increased swell wave and/or tidal energy levels, fostering sediment abrasion and reworking, reduced sedimentation rates and freer exchange of sediment pore‐waters. Energy levels were probably also enhanced by increased upwelling of cold, deep waters onto the Southern Ocean margins of the Australasian carbonate platforms, where water‐mass mixing, warming and loss of CO2 locally maintained critical levels of carbonate saturation for sea‐floor cement precipitation and promoted the phosphate‐glauconite mineralization associated with some of the marine‐cemented limestone units.  相似文献   
54.
Coastal ecosystems are ecologically and commercially valuable, productive habitats that are experiencing escalating compromises of their structural and functional integrity. The Clean Water Act (USC 1972) requires identification of impaired water bodies and determination of the causes of impairment. Classification simplifies these determinations, because estuaries within a class are more likely to respond similarly to particular stressors. We reviewed existing classification systems for their applicability to grouping coastal marine and Great Lakes water bodies based on their responses to aquatic stressors, including nutrients, toxic substances, suspended sediments, habitat alteration, and combinations of stressors. Classification research historically addressed terrestrial and freshwater habitats rather than coastal habitats. Few efforts focused on stressor response, although many well-researched classification frameworks provide information pertinent to stressor response. Early coastal classifications relied on physical and hydrological properties, including geomorphology, general circulation patterns, and salinity. More recent classifications sort ecosystems into a few broad types and may integrate physical and biological factors. Among current efforts are those designed for conservation of sensitive habitats based on ecological processes that support patterns of biological diversity. Physical factors, including freshwater inflow, residence time, and flushing rates, affect sensitivity to stressors. Biological factors, such as primary production, grazing rates, and mineral cycling, also need to be considered in classification. We evaluate each existing classification system with respect to objectives, defining factors, extent of spatial and temporal applicability, existing sources of data, and relevance to aquatic stressors. We also consider classification methods in a generic sense and discuss their strengths and weaknesses for our purposes. Although few existing classifications are based on responses to stressors, may well-researched paradigms provide important information for improving our capabilities for classification, as an investigative and predictive management tool.  相似文献   
55.
Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed‐scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, intensely agricultural, Raccoon River watershed in Iowa. We first developed a baseline model for flood risk based on current land use and typical weather patterns and then simulated the effects of varying levels of increased perennials on the landscape under the same weather patterns. Results suggest that land use changes in the Raccoon River could reduce the likelihood of flood events, decreasing both the number of flood events and the frequency of severe floods. The duration of flood events were not substantially affected by land use change in our assessment. The greatest flood risk reduction was associated with converting all cropland to perennial vegetation, but we found that converting half of the land to perennial vegetation or extended rotations (and leaving the remaining area in cropland) could also have major effects on reducing downstream flooding potential. We discuss the potential costs of adopting the land use change in the watershed to illustrate the scale of subsidies required to induce large‐scale conversion to perennially based systems needed for flood risk reduction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
56.
The Lesser Qinling carbonatite dykes are mainly composed of calcites. They are characterized by unusually high heavy rare earth element concentrations (HREE; e.g. Yb > 30 ppm) and flat to weakly light rare earth element (LREE) enriched chondrite-normalized patterns (La/Ybn = 1.0–5.5), which is in marked contrast with all other published carbonatite data. The trace element contents of calcite crystals were measured in situ by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Some crystals show reduced LREE from core to rim, whereas their HREE compositions are relatively constant. The total REE contents and chondrite-normalized REE patterns from the cores of carbonate crystals are similar to those of the whole rock. The carbon and oxygen isotopic compositions of calcites fall within the range of primary, mantle-derived carbonatites. The initial Sr isotopic compositions (0.70480–0.70557) of calcites are consistent with an EM1 source or mixing between HIMU and EM1 mantle sources. However these sources cannot produce carbonatite parental magmas with a flat or slightly LREE enrichment pattern by low degrees of partial melting. Analyses of carbonates from other carbonatites show that carbonates have nearly flat REE pattern if they crystallize from a LREE enriched carbonatite melt. This implies that when carbonates crystallize from a carbonatite melt the calcite/melt partition coefficients (D) for HREE are much greater than the D for the LREE. The nearly flat REE patterns of the Lesser Qinling carbonatites can be explained if they are carbonate cumulates that contain little trapped carbonatite melt. Strong enrichment of HREE in the carbonatites may require their derivation by small degrees of melting from a garnet-poor source.  相似文献   
57.
The arcuate pattern of the main Caledonian cleavage and associated fold axial plane traces in North Wales is due partly to NW-SE compression with tectonic transport to the southeast against the concealed crop of the Tan y grisiau Microgranite. Low-angle cleavage close to the microgranite is shown to be a local variant of the regional cleavage formed during the main deformation and not an earlier phase as previously supposed. Transcurrent movements along several major fault systems are also related to compression around the microgranite and the Harlech Dome block.  相似文献   
58.
This study investigates the sensitivity of the one-way nested PRECIS regional climate model (RCM) to domain size for the Caribbean region. Simulated regional rainfall patterns from experiments using three domains with horizontal resolution of 50 km are compared with ERA reanalysis and observed datasets to determine if there is an optimal RCM configuration with respect to domain size and the ability to reproduce important observed climate features in the Caribbean. Results are presented for the early wet season (May–July) and late wet season (August–October). There is a relative insensitivity to domain size for simulating some important features of the regional circulation and key rainfall characteristics e.g. the Caribbean low level jet and the mid summer drought (MSD). The downscaled precipitation has a systematically negative precipitation bias, even when the domain was extended to the African coast to better represent circulation associated with easterly waves and tropical cyclones. The implications for optimizing modelling efforts within resource-limited regions like the Caribbean are discussed especially in the context of the region’s participation in global initiatives such as CORDEX.  相似文献   
59.
Sediment waves are commonly observed on the sea floor and often vary in morphology and geometry according to factors such as seabed slope, density and discharge of turbidity currents, and the presence of persistent contour currents. This paper documents the morphology, internal geometry and distribution of deep‐water (4000 to 5000 m) bedforms observed on the sea floor offshore eastern Canada using high‐resolution multibeam bathymetry data and seismic stratigraphy. The bedforms have wavelengths of >1 km but fundamentally vary in terms of morphology and internal stratigraphy, and are distinguished into three main types. The first type, characterized by their long‐wavelength crescentic shape, is interpreted as net‐erosional cyclic steps. These cyclic steps were formed by turbidity currents flowing through canyons and overtopping and breaching levées. The second type, characterized by their linear shape and presence on levées, is interpreted as net‐depositional cyclic steps. These upslope migrating bedforms are strongly aggradational, indicating high sediment deposition from turbidity currents. The third type, characterized by their obliqueness to canyons, is observed on an open slope and is interpreted as antidunes. These antidunes were formed by the deflection of the upper dilute, low‐density parts of turbidity currents by contour currents. The modelling of the behaviour of these different types of turbidity currents reveals that fast‐flowing flows form cyclic steps while their upper parts overspill and are entrained westward by contour currents. The interaction between turbidity currents and contour currents results in flow thickening and reduced sediment concentration, which leads to lower flow velocities. Lower velocities, in turn, allow the formation of antidunes instead of cyclic steps because the densiometric Froude number (Fr′) decreases. Therefore, this study shows that both net‐erosional and net‐depositional cyclic steps are distributed along channels where turbidity currents prevail whereas antidunes form on open slopes, in a mixed turbidite/contourite system. This study provides insights into the influence of turbidity currents versus contour currents on the morphology, geometry and distribution of bedforms in a mixed turbidite–contourite system.  相似文献   
60.
This study examines the spatial and temporal variability of chemical denudation rates in Kärkevagge, northern Sweden. The chemical flux rates within the valley are strongly influenced by the local geology. Chemical denudation rates determined for the study period are more than double those previously reported in the literature for this valley. Rates of greater than 46t km−2 a−1 were measured at the valley mouth over the course of the melt season. This difference is likely due to differences in measurement technique compared to that used by past researchers. This rate is also much higher than for other arctic and alpine watersheds. Chemical denudation in Kärkevagge is comparable to larger temperate rivers. The rapid chemical denudation in Kärkevagge is likely due to sulfide weathering creating acid solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号