首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1312篇
  免费   34篇
  国内免费   15篇
测绘学   29篇
大气科学   95篇
地球物理   326篇
地质学   573篇
海洋学   108篇
天文学   133篇
综合类   5篇
自然地理   92篇
  2021年   10篇
  2020年   9篇
  2019年   8篇
  2018年   26篇
  2017年   28篇
  2016年   45篇
  2015年   29篇
  2014年   33篇
  2013年   76篇
  2012年   48篇
  2011年   70篇
  2010年   74篇
  2009年   77篇
  2008年   60篇
  2007年   62篇
  2006年   56篇
  2005年   81篇
  2004年   61篇
  2003年   43篇
  2002年   43篇
  2001年   35篇
  2000年   21篇
  1999年   29篇
  1998年   23篇
  1997年   10篇
  1996年   20篇
  1995年   15篇
  1994年   16篇
  1993年   9篇
  1992年   18篇
  1991年   11篇
  1990年   15篇
  1989年   9篇
  1988年   10篇
  1987年   11篇
  1986年   16篇
  1985年   16篇
  1984年   15篇
  1983年   10篇
  1982年   10篇
  1981年   15篇
  1980年   8篇
  1979年   11篇
  1978年   8篇
  1977年   10篇
  1976年   11篇
  1975年   4篇
  1974年   13篇
  1973年   4篇
  1953年   2篇
排序方式: 共有1361条查询结果,搜索用时 11 毫秒
11.
12.
Abstract. The synaptid holothuroid Leptosynapta inhaerens has the ability to expel unwanted particles that enter its body cavity. Intracoelomic particles ( viz. experimentally injected carmine particles) are trapped either by a coelom-produced mucoid net or by specialized organs (the vibratile urnae) that occur in bands in some interradial areas. Whatever the trapping method, particles are incorporated into dense mucoid masses that move towards the posterior part of the body cavity, in the vicinity of the rectum. These aggregates then cross the rectal wall through rectal pores, mix with the faeces, and are eventually incorporated into the wall of the synaptid burrow. Clearance of foreign particles requires 2 to 3 days. The coelom-cleaning system of synaptids appears to be the most effective within the class Holothuroidea , being well designed for endofaunal organisms whose walls are delicate and easily rupture.  相似文献   
13.
Quantifying bank storage of variably saturated aquifers   总被引:1,自引:0,他引:1  
Li H  Boufadel MC  Weaver JW 《Ground water》2008,46(6):841-850
Numerical simulations were conducted to quantify bank storage in a variably saturated, homogenous, and anisotropic aquifer abutting a stream during rising stream stage. Seepage faces and bank slopes ranging from 1/3 to 100/3 were simulated. The initial conditions were assumed steady-state flow with water draining toward the stream. Then, the stream level rose at a constant rate to the specified elevation of the water table given by the landward boundary condition and stayed there until the system reached a new steady state. This represents a highly simplified version of a real world hydrograph. For the specific examples considered, the following conclusions can be made. The volume of surface water entering the bank increased with the rate of stream level rise, became negligible when the rate of rise was slow, and approached a positive constant when the rate was large. Also, the volume decreased with the dimensionless parameter M (the product of the anisotropy ratio and the square of the domain's aspect ratio). When M was large (>10), bank storage was small because most pore space was initially saturated with ground water due to the presence of a significant seepage face. When M was small, the seepage face became insignificant and capillarity began to play a role. The weaker the capillary effect, the easier for surface water to enter the bank. The effect of the capillary forces on the volume of surface water entering the bank was significant and could not be neglected.  相似文献   
14.
The SOLSPEC instrument has been built to carry out solar spectral irradiance measurements from 200 to 3000 nm. It consists of three spectrometers designed to measure the solar spectral irradiance in ultraviolet, visible, and infrared domains. It flew with the ATLAS I mission in March 1992. This paper is dedicated to the visible part of the solar spectrum. Comparisons with recent data are shown and differences below 450 nm are discussed.  相似文献   
15.
The polarization of Pluto has been measured for a range of solar phase angles from 0.8 to 1.8°. A mean linear polarization of 0.29 ± 0.01% (error of the mean) was found. No dependence of both the amount of polarization and position angles with rotational phase or solar phase angle could be detected. The positional angles of polarization agree with calculated position angles of the defect of illumination and are therefore parallel to the scattering plane. The observed polarization cannot be explained as resulting purely from a surface material which is similar to asteroidal surfaces. A hypothesis of polarization from a thin atmosphere, in addition to the surface polarization, is advanced.  相似文献   
16.
Light curve modeling for the newly discovered super contact low-mass WUMa system 1SWASPJ092328.76+435044 was carried out by using a new BVR complete light curves. A spotted model was applied to treat the asymmetry of the light curves. The output model was obtained by means of Wilson–Devinney code, which reveals that the massive component is hotter than the less massive one with about ΔT ~ 40 K. A total of six new times of minima were estimated. The evolutionary state of the system components was investigated based on the estimated physical parameters.  相似文献   
17.
Abstract— Two spherical targets made of gabbro with a radius of 25 cm and of steel with a radius of 10 cm were irradiated isotropically with 1600 MeV protons at the SATURNE synchrotron at Laboratoire National Saturne (LNS)/CEN Saclay, in order to simulate the production of nuclides in meteorites induced by galactic cosmic‐ray protons in space. These experiments supply depth‐dependent production rate data for a wide range of radioactive and stable isotopes in up to 28 target elements. In this paper, we report results for 78Kr, 80–86Kr isotopes in Rb, Sr, Y and Zr and for 124Xe, 126Xe, 128–132Xe, 134Xe, 136Xe isotopes in Ba and La. Krypton and xenon concentrations have been measured at different depths in the spheres by using conventional mass spectrometry. Based on Monte‐Carlo techniques, theoretical production rates are calculated by folding depth‐dependent spectra of primary and secondary protons and secondary neutrons with the excitation functions of the relevant nuclear reactions. The comparison of the model calculation results with experimental data in the thick target experiments performed at LNS and previously at CERN have allowed adjustments of the poorly known excitation functions of neutron‐induced reactions. Thus, for the two experiments at SATURNE, excellent agreement is obtained between experimental and calculated production rates for most Kr and Xe isotopes in all investigated target elements. Only Xe production in Ba in the gabbro is underestimated by the calculations by ?25%. This work validates the approach of the thin‐target model calculations of cosmogenic nuclide production rates in the attempt of modeling the interaction of galactic cosmic‐ray protons with stony and iron meteorites in space as well as with lunar samples.  相似文献   
18.
A recently published model of the Near Earth Object (NEO) orbital-magnitude distribution (Bottke et al., 2002, Icarus156, 399-433.) relies on five intermediate sources for the NEO population: the ν6 resonance, the 3:1 resonance, the outer portion of the main belt (i.e., 2.8-3.5 AU), the Mars-crossing population adjacent to the main belt, and the Jupiter family comet population. The model establishes the relative contribution of these sources to the NEO population. By computing the albedo distribution of the bodies in and/or near each of the five sources, we can deduce the albedo distribution of the NEO population as a function of semimajor axis, eccentricity, and inclination. A problem with this strategy, however, is that we do not know a priori the albedo distribution of main belt asteroids over the same size range as observed NEOs (diameter D<10 km). To overcome this problem, we determined the albedo distribution of large asteroids in and/or near each NEO source region and used these results to deduce the albedo distribution of smaller asteroids in the same regions. This method requires that we make some assumptions about the absolute magnitude distributions of both asteroid families and background asteroids. Our solution was to extrapolate the observed absolute magnitude distributions of the families up to some threshold value Hthr, beyond which we assumed that the families' absolute magnitude distributions were background-like.We found that Hthr=14.5 provides the best match to the color vs heliocentric distance distribution observed by the Sloan Digital Sky Survey. With this value of Hthr our model predicts that the debiased ratio between dark and bright (albedo smaller or larger than 0.089) objects in any absolute-magnitude-limited sample of the NEO population is 0.25±0.02. Once the observational biases are properly taken into account, this agrees very well with the observed C/S ratio (0.165 for H<20). The dark/bright ratio of NEOs increases to 0.87±0.05 if a size-limited sample is considered. We estimate that the total number of NEOs larger than a kilometer is 855±110, which, compared to the total number of NEOs with H<18 (963±120), shows that the usually assumed conversion H=18?D=1 km slightly overestimates the number of kilometer-size objects.Combining our orbital distribution model with the new albedo distribution model, and assuming that the density of bright and dark bodies is 2.7 and 1.3 g/cm3, respectively, we estimate that the Earth should undergo a 1000 megaton collision every 63,000±8000 years. On average, the bodies capable of producing 1000 megaton of impact energy are those with H<20.6. The NEOs discovered so far carry only 18±2% of this collision probability.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号