首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   2篇
  国内免费   1篇
大气科学   4篇
地球物理   37篇
地质学   42篇
海洋学   5篇
天文学   4篇
自然地理   6篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   6篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   2篇
  2006年   1篇
  2005年   9篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1989年   3篇
  1982年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1964年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
11.
12.
13.
We want to develop a dialogue between geophysicists and hydrologists interested in synergistically advancing process based watershed research. We identify recent advances in geophysical instrumentation, and provide a vision for the use of electrical and magnetic geophysical instrumentation in watershed scale hydrology. The focus of the paper is to identify instrumentation that could significantly advance this vision for geophysics and hydrology during the next 3–5 years. We acknowledge that this is one of a number of possible ways forward and seek only to offer a relatively narrow and achievable vision. The vision focuses on the measurement of geological structure and identification of flow paths using electrical and magnetic methods. The paper identifies instruments, provides examples of their use, and describes how synergy between measurement and modelling could be achieved. Of specific interest are the airborne systems that can cover large areas and are appropriate for watershed studies. Although airborne geophysics has been around for some time, only in the last few years have systems designed exclusively for hydrological applications begun to emerge. These systems, such as airborne electromagnetic (EM) and transient electromagnetic (TEM), could revolutionize hydrogeological interpretations. Our vision centers on developing nested and cross scale electrical and magnetic measurements that can be used to construct a three‐dimensional (3D) electrical or magnetic model of the subsurface in watersheds. The methodological framework assumes a ‘top down’ approach using airborne methods to identify the large scale, dominant architecture of the subsurface. We recognize that the integration of geophysical measurement methods, and data, into watershed process characterization and modelling can only be achieved through dialogue. Especially, through the development of partnerships between geophysicists and hydrologists, partnerships that explore how the application of geophysics can answer critical hydrological science questions, and conversely provide an understanding of the limitations of geophysical measurements and interpretation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
14.
The Gemmi fault is a prominent NW–SE striking lineament that crosses the Gemmi Pass in the central Swiss Alps. A multidisciplinary investigation of this structure that included geological mapping, joint profiling, cathodoluminescence and scanning electron microscopy, stable isotope measurements, luminescence- and U-TH-dating, 3D ground penetrating radar (GPR) surveying and trenching reveals a history of fault movements from the Miocene to the Holocene. The main fault zone comprises a 0.5–3 m thick calcite cataclasite formed during several cycles of veining and brittle deformation. Displaced Cretaceous rock layers show an apparent dextral slip of 10 m along the fault.A detailed study of a small sediment-filled depression that crosses the fault provides evidence for a post-glacial reactivation of the fault. A trench excavated across the fault exposed a Late-Glacial-age loess layer and late Holocene colluvial-like slope-wash deposits that showed evidence for fault displacement of a few centimeters, indicating a recent strike-slip reactivation of the fault. Focal mechanisms of recent instrumentally recorded earthquakes are consistent with our findings that show that the fault at the Gemmi Pass, together with other parallel faults in this area, may be reactivated in today's stress field. Taking together all the observations of its ancient and recent activity, the Gemmi fault can be viewed as a window through geological space and time.  相似文献   
15.
High-latitude dust (HLD) depositions on four glaciers of James Ross Island (the Ulu Peninsula) were analysed. The deposition rate on the selected glaciers varies from 11.8 to 64.0 g m−2, which is one order of magnitude higher compared to the glaciers in Antarctica or elsewhere in the world. A strong negative relationship between the sediment amount and altitude of a sampling site was found. This is most likely caused by the higher availability of aeolian material in the atmospheric boundary layer. General southerly and south-westerly wind directions over the Ulu Peninsula – with exceptions based on local terrain configuration – help to explain the significantly lower level of sediment deposition on San Jose Glacier and the high level on Triangular Glacier. X-ray fluorescence (XRF) spectrophotometry was used to estimate the relative proportions of the main and trace (lithophile) elements in the sediment samples. Both the sediment amount and the XRF results are analysed in a depth profile at each locality and compared among the glaciers, suggesting long-range transport of fine mineral material from outside James Ross Island. The distribution of aeolian sediment among the glaciers corresponds well with the prevailing wind direction on the Ulu Peninsula. © 2020 John Wiley & Sons, Ltd.  相似文献   
16.
17.
18.
The sulfur isotope record in late Archean and early Paleoproterozoic rocks is of considerable importance because it provides evidence for changes in early Earth atmospheric oxygen levels and potentially constrains the origin and relative impact of various microbial metabolisms during the transition from an anoxic to oxic atmosphere. Mass independently fractionated (MIF) sulfur isotopes reveal late Archean and early Paleoproterozoic sulfur sources in different pyrite morphologies in Western Australia's Hamersley Basin. Multiple sulfur isotope values in late Archean pyrite vary according to morphology. Fine grained pyrite has positive sulfur MIF, indicating a reduced elemental sulfur source, whereas pyrite nodules have negative sulfur MIF, potentially derived from soluble sulfate via microbial sulfate reduction. The Hamersley Basin δ34S–Δ33S record suggests that the extent of oxygenation of the surface ocean fluctuated through the Late Archean from at least 2.6 Ga, more than 150 million yr before the Great Oxidation Event. In the early Paleoproterozoic, there is less distinction between pyrite morphologies with respect to sulfur isotope fractionation, and pyrite from the Brockman Iron Formation trends toward modern sulfur isotope values. An important exception to this is the strong negative MIF recorded in layer parallel pyrite in Paleoproterozoic carbonate facies iron formation. This may suggest that deeper water hydrothermal environments remained anoxic while shallower water environments became more oxidised by the early Paleoproterozoic. The results of the current study indicate that sulfide paragenesis is highly significant when investigating Archean and early Paleoproterozoic multiple sulfur isotope compositions and sulfur sources.  相似文献   
19.
20.
Jia Liu  Michaela Bray  Dawei Han 《水文研究》2012,26(20):3012-3031
Accurate information of rainfall is needed for sustainable water management and more reliable flood forecasting. The advances in mesoscale numerical weather modelling and modern computing technologies make it possible to provide rainfall simulations and forecasts at increasingly higher resolutions in space and time. However, being one of the most difficult variables to be modelled, the quality of the rainfall products from the numerical weather model remains unsatisfactory for hydrological applications. In this study, the sensitivity of the Weather Research and Forecasting (WRF) model is investigated using different domain settings and various storm types to improve the model performance of rainfall simulation. Eight 24‐h storm events are selected from the Brue catchment, southwest England, with different spatial and temporal distributions of the rainfall intensity. Five domain configuration scenarios designed with gradually changing downscaling ratios are used to run the WRF model with the ECMWF 40‐year reanalysis data for the periods of the eight events. A two‐dimensional verification scheme is proposed to evaluate the amounts and distributions of simulated rainfall in both spatial and temporal dimensions. The verification scheme consists of both categorical and continuous indices for a first‐level assessment and a more quantitative evaluation of the simulated rainfall. The results reveal a general improvement of the model performance as we downscale from the outermost to the innermost domain. Moderate downscaling ratios of 1:7, 1:5 and 1:3 are found to perform better with the WRF model in giving more reasonable results than smaller ratios. For the sensitivity study on different storm types, the model shows the best performance in reproducing the storm events with spatial and temporal evenness of the observed rainfall, whereas the type of events with highly concentrated rainfall in space and time are found to be the trickiest case for WRF to handle. Finally, the efficiencies of several variability indices are verified in categorising the storm events on the basis of the two‐dimensional rainfall evenness, which could provide a more quantitative way for the event classification that facilitates further studies. It is important that similar studies with various storm events are carried out in other catchments with different geographic and climatic conditions, so that more general error patterns can be found and further improvements can be made to the rainfall products from mesoscale numerical weather models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号