In this age of modern biology, aquatic toxicological research has pursued mechanisms of action of toxicants. This has provided potential tools for ecotoxicologic investigations. However, problems of biocomplexity and issues at higher levels of biological organization remain a challenge. In the 1980s and 1990s and continuing to a lesser extent today, organisms residing in highly contaminated field sites or exposed in the laboratory to calibrated concentrations of individual compounds were carefully analyzed for their responses to priority pollutants. Correlation of biochemical and structural analyses in cultured cells and tissues, as well as the in vivo exposures led to the production and application of biomarkers of exposure and effect and to our awareness of genotoxicity and its chronic manifestations, such as neoplasms, in wild fishes. To gain acceptance of these findings in the greater environmental toxicology community, “validation of the model” versus other, better-established often rodent models, was necessary and became a major focus. Resultant biomarkers were applied to heavily contaminated and reference field sites as part of effects assessment and with investigations following large-scale disasters such as oil spills or industrial accidents.
Over the past 15 years, in the laboratory, small aquarium fish models such as medaka (Oryzias latipes), zebrafish (Danio rerio), platyfish (Xiphophorus species), fathead minnow (Pimephales promelas), and sheepshead minnow (Cyprinodon variegatus) were increasingly used establishing mechanisms of toxicants. Today, the same organisms provide reliable information at higher levels of biological organization relevant to ecotoxicology. We review studies resolving mechanisms of toxicity and discuss ways to address biocomplexity, mixtures of contaminants, and the need to relate individual level responses to populations and communities. 相似文献
The kinetics of cation disordering in a natural ordered (P2/n) omphacite have been followed at P=18 and 30 kb, T= 750–1,260° C, for times of between 1.5 min and 16 days in a piston-cylinder apparatus. Time-temperature-transformation (TTT) analysis of the experimental data, using the presence or absence of the 11¯1 reflection in single crystal X-ray precession photographs to indicate the extent of reaction, yields an equilibrium order/disorder temperature (Tord) of 865±10° C, an activation enthalpy (1 bar) of 71±6 kcal mole–1 and an activation volume of 9±4 cm3 mole–1 (plus and minus figures represent the precision of a best fit between experimental data and TTT theory rather than absolute errors). The activation volume is consistent with a vacancy mechanism of cation diffusion. H2O, added in the form of oxalic acid, appears to speed the process up slightly. The overall transformation mechanism is continuous, involving neither the nucleation of a disordered phase nor a change in antiphase-domain distribution. This is consistent with both first- and non-first-order character for the C2/cP2/n transformation, though a range of ordered states below Tord is indicated by the weakening of h+k=odd reflections. A simple extrapolation of the disordering rates to geological conditions leads to the first estimate of how long disordered omphacites would take to order in nature, ranging from less than one year at T800° C to more than 107 years at T<350° C. 相似文献
California Governor’s Executive Order (CGEO) S-3-05 requires that California greenhouse gas (GHG) emissions be reduced to 80 % below 1990 levels by the year 2050. Meeting this target will require drastic changes in transportation technology, fuel, and behavior which will reduce criteria pollutant emissions as well as GHG emissions. The improvement to local air quality caused by the reduced criteria pollutant emissions must be calculated to fully evaluate the overall benefits and costs of CGEO S-3-05. In the present study, seven different transportation scenarios that move towards the goals of CGEO S-3-05 in the transportation sector were examined to determine how they would affect future airborne particulate matter (PM2.5) concentrations in California: (1) hydrogen fuel cells, (2) electric vehicles, (3) high efficiency vehicles, (4) public mass transit, (5) biofuels, (6) biofuels + hybrid electric vehicles, and (7) hydrogen fuel cells + electric vehicles. The air quality implications of each scenario were evaluated using a chemical transport model applied during a wintertime stagnation episode representing future climate in California. Scenarios (6) and (7) reduced population-weighted PM2.5 mass concentrations by ~9 % and PM2.5 elemental carbon (EC) concentrations by ~30 % relative to base-case predictions. 相似文献
The Newberry Volcano EGS Demonstration in central Oregon tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. An EGS reservoir was created by injecting large volumes of cold water, causing existing fractures to slip in shear (known as hydroshearing) generating the seismic waves that can be used to map fracture location and size. At the Newberry Demonstration the final injectivity ranged between 1.4 and 1.7 L/s/MPa a ~6x improvement over the initial injectivity of the well. The injectivity improvement and seismic analysis indicate that previously impermeable fractures were enhanced during the NWG 55-29 stimulation. 相似文献
Mercury, cadmium, lead, copper, zinc and chromium were assessed in brown shrimp (Crangon crangon), swimming crab (Liocarcinus holsatus), hermit crab (Pagurus bernhardus), starfish (Asterias rubens) and cut trough shell (Spisulasubtruncata) from ten sampling stations off the Belgian coast, including three dredge spoils disposal sites. Calculations of time trends indicated that on the whole concentrations of trace metals had significantly decreased since 1981, also on dredged material dumping sites. Starfish and hermit crab were found to be the most promising benthic indicator species for metal contamination. Globally, the location of the sites, including the dredge spoils disposal zones, showed to be of little influence on the concentrations of trace metals. 相似文献
We report on the petrology, mineralogic properties and contents of major elements and trace elements Ag, Au, Bi, Cd, Co, Cs, Ga, In, Rb, Se, Te, Tl, U and Zn (determined by radiochemical neutron activation analysis) in Yamato 74160, interpreted as an LL7 chondrite. All properties are consistent with this meteorite having been recrystallized and partially melted locally once at temperatures well above 1090°C under conditions such that some minerals (e.g. plagioclase, euhedral pyroxene, tetrataenite) grew from melt pockets and siderophilic and chalcophilic elements were lost by extraction into eutectic melt that drained away. Inhomogeneous plagioclase compositions and mobile element loss suggest shock as the most likely heat source. Yamato 74160, while inferentially chondritic, is a larval achondrite: even higher temperatures and longer times would have been required to cause the separations necessary to transform it to an identifiable achondrite type. 相似文献
During a whole growing season, the evolution of the displacement height, d, and roughness length, z0, of a maize crop has been estimated by a measurement programme. The results have been used to check different types of existing models to calculate these parameters from canopy characteristics only; a simple geometric model and two matching models have been investigated. A geometric model is based on geometric features of the surface only. After a simple modification, the geometric model gives good results for the displacement height as well as for the roughness length.A matching model, based on gradient-diffusion theory, yields good results for the displacement height. The roughness parameter, however, is overestimated by 17%. By a simple modification, the model results could be improved considerably.A matching model, based on a second-order closure procedure, yields excellent results for the displacement height and good results for the roughness length. But it appears that, when applying this model, the plant density index and plant area density distribution as a function of height must be well known. 相似文献
The analysis of granitic pegmatites still remains a challenge because suitable natural reference materials are scarce or not available. Two new reference materials were prepared at the Smithsonian Institution, to provide an avenue to pursue the geochemical analysis of micas and feldspars in granitic pegmatites: STL-1, the Stewart lepidolite (NMNH 174041) and ZA-1, the Zapot amazonite (NMNH 174042). STL-1 was prepared from lepidolite collected from the lithium-rich Stewart pegmatite, San Diego County, California (33°22'52'N, 117°03'41'W). ZA-1 was prepared from an amazonite from the topaz-bearing Zapot pegmatite, Mineral County, Nevada, (38° 41'N, 118 °33'W). The results of this study indicated that STL-1 and ZA-1 are homogeneous and could be used as reference materials that would allow the expansion of calibration curves in XRF analysis up to 16000 μg g−1 for Rb, 2000 μg g−1 for Cs and 100 μg g−1 for Tl. STL-1 and ZA-1 also contain unusually high concentrations of Ga and Tl, and STL-1 of Nb. 相似文献
We have developed cleaning methods for extracting diatomopal from bulk marine sediment samples, for measurement of both zinc (Zn) abundance and isotope composition. This cleaning technique was then applied to a set of Holocene core-top samples from the Southern Ocean. The measured δ66Zn (reported relative to the JMCLyon standard) and Zn/Si ratios from the Southern Ocean diatomopal samples range from 0.7 to 1.5‰, and from 14 to 0.9 μmol/mol, respectively. The Zn abundance and isotope composition data show a clear correlation with opal burial rates and other oceanographic parameters. In common with previous work, we interpret the systematic changes in the Zn/Si ratio to be linked to the variability in the concentrations of bioavailable Zn in the ambient surface seawater where the diatom opal is formed. This variability is likely to be primarily controlled by the degree to which Zn is taken up into phytoplankton biomass. The observed systematic pattern in the δ66Zn compositions of the diatomopal core-top samples is, similarly, likely to reflect changes in the δ66Zn composition of the ambient Zn in the surface waters above the core-top sites, which is progressively driven towards isotopically heavier values by preferential incorporation of the lighter isotopes into phytoplankton organic material. Thus, the systematic relationship between Zn isotopes and abundance observed in the core-top diatomopal samples suggests a potential tool for investigating the biogeochemical cycling of Zn in the past surface ocean for down-core diatomopal material. In this respect, it may be possible to test hypotheses that attribute variations in atmospheric CO2 on glacial–interglacial timescales to the degree to which trace metals limited primary productivity in HNLC zones. 相似文献