首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   4篇
地质学   16篇
天文学   15篇
自然地理   2篇
  2022年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1990年   3篇
  1983年   1篇
  1974年   1篇
排序方式: 共有39条查询结果,搜索用时 328 毫秒
21.
CoRoT-2a is a young (≈0.5 Gyr) G7V star accompanied by a transiting hot-Jupiter, discovered by the CoRoT satellite (Alonso et al. Astron Astrophys 482:L21, 2008; Bouchy et al. Astron Astrophys 482:L25, 2008). An analysis of its photospheric activity, based on spot modelling techniques previously developed by our group for the analysis of the Sun as a star, shows that the active regions on CoRoT-2a arised within two active longitudes separated by about 180° and rotating with periods of 4.5221 and 4.5543 days, respectively, at epoch of CoRoT observations (112 continous days centered at ≈2007.6). We show that the total spotted area oscillates with a period of about 28.9 days, a value close to 10 times the synodic period of the planet with respect to the active longitude pattern rotating in 4.5221 days. Moreover, the variance of the stellar flux is modulated in phase with the planet orbital period. This suggests a possible star–planet magnetic interaction, a phenomenon already seen in other extrasolar planetary systems hosting hot-Jupiters.  相似文献   
22.
We present a new tephrostratigraphic record from the Holocene lake sediments of the Sulmona basin, central Italy. The Holocene succession is represented by whitish calcareous mud that is divided into two units, SUL2 (ca 32 m thick) and SUL1 (ca 8 m thick), for a total thickness of ca 40 m. These units correspond to the youngest two out of six sedimentary cycles recognised in the Sulmona basin that are related to the lake sedimentation since the Middle Pleistocene. Height concordant U series age determinations and additional chronological data constrain the whole Holocene succession to between ca 8000 and 1000 yrs BP. This includes a sedimentary hiatus that separates the SUL2 and SUL1 units, which is roughly dated between <2800 and ca 2000 yrs BP. A total of 31 and 6 tephra layers were identified within the SUL2 and SUL1 units, respectively. However, only 28 tephra layers yielded fresh micro-pumices or glass shards suitable for chemical analyses using a microprobe wavelength dispersive spectrometer. Chronological and compositional constraints suggest that 27 ash layers probably derive from the Mt. Somma-Vesuvius Holocene volcanic activity, and one to the Ischia Island eruption of the Cannavale tephra (2920 ± 450 cal yrs BP). The 27 ash layers compatible with Mt. Somma-Vesuvius activity are clustered in three different time intervals: from ca 2000 to >1000; from 3600 to 3100; and from 7600 to 4700 yrs BP. The first, youngest cluster, comprises six layers and correlates with the intense explosive activity of Mt. Somma-Vesuvius that occurred after the prominent AD 79 Pompeii eruption, but only the near-Plinian event of AD 472 has been tentatively recognised. The intermediate cluster (3600–3100 yrs BP) starts with tephra that chemically and chronologically matches the products from the “Pomici di Avellino” eruption (ca 3800 ± 200 yrs BP). This is followed by eight further layers, where the glasses exhibit chemical features that are similar in composition to the products from the so-called “Protohistoric” or AP eruptions; however, only the distal equivalents of three AP events (AP3, AP4 and AP6) are tentatively designated. Finally, the early cluster (7600–4700 yrs BP) comprises 12 layers that contain evidence of a surprising, previously unrecognised, activity of the Mt. Somma-Vesuvius volcano during its supposed period of quiescence, between the major Plinian “Pomici di Mercato” (ca 9000 yrs BP) and “Pomici di Avellino” eruptions. Alternatively, since at present there is no evidence of a similar significant activity in the proximal area of this well-known volcano, a hitherto unknown origin of these tephras cannot be role out. The results of the present study provide new data that enrich our previous knowledge of the Holocene tephrostratigraphy and tephrochronology in central Italy, and a new model for the recent explosive activity of the Peninsular Italy volcanoes and the dispersal of the related pyroclastic deposits.  相似文献   
23.
24.
25.
Abstract

The definition of the active fault geometry and kinematics in young evolving orogens may be difficult owing to changes in the structural architecture which may occur with a frequence of few hundred thousand years. Cases from the central Apennines well illustrate this problem. The Avezzano-Bussi and Vallelonga-Salto Valley fault systems (65 and 85 km long, respectively) show clear evidence of Pliocene-early Pleistocene activity and have been responsible for the formation of intermontane basins. Available geological data, however, indicate that only minor segments (the Tre Monti and Trasacco faults, both 7 km long) of the mentioned faults have to be considered active during the late Pleistocene-Holocene, as faults accommodating minor deformations inside an intermontane basin. The L'Aquila fault system underwent significant geometrical and kinematic modifications during the Quaternary, with the reactivation of minor portions of parallel normal faults to draw a new system of en-echelon normal-oblique left-lateral faults. The Laga Mts. fault experienced an along-fault activity migration. The portion of the fault which was active earlier during the Quaternary shows a significant decrease or end of the activity while a portion previously not active displays impressive evidence of late Pleistocene-Holocene displacements. Structural changes in the intermontane basins bounded by the Colfiorito fault system also indicate that the intensity of the tectonic activity decreased during the Quaternary. Not defining the structural evolution in the above mentioned cases would imply wrong conclusions for both the fault geometry and kinematics which may be delivered for seismotectonics and seismic hazard assessment. This typically leads to overestimate the fault length and the expected magnitude or to the increase in the number of seismogenic sources affecting an area. Finally, the definition of the structural evolution permits to select between different geometrical options in terms of active faulting framework (e.g. a system of parallel normal faults vs. a system of en-echelon normal oblique faults as in the case of the L'Aquila fault system) related to different geometries at depth (detachment normal fault vs. high-angle oblique fault). © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   
26.
Benford’s analysis is applied to the recurrence times of approximately 17,000 seismic events in different geological contexts of Italy over the last 6 years, including the Mt. Etna volcanic area and the seismic series associated with the destructive M w 6.3, 2009 L’Aquila earthquake. A close conformity to Benford’s law and a power-law probability distribution for the recurrence times of consecutive events is found, as typical of random multiplicative processes. The application of Benford’s law to the recurrence event times in seismic series of specific seismogenic regions represents a novel approach, which enlarges the occurrence and relevance of Benford-like asymmetries, with implications on the physics of natural systems approaching a power law behaviour. Moreover, we propose that the shift from a close conformity of Benford’s law to Brownian dynamics, observed for time separations among non-consecutive events in the study seismic series, may be ruled by a periodical noise factor, such as the effects of Earth tides on seismicity tuning.  相似文献   
27.
The Aeolian Islands are an arcuate chain of submarine seamounts and volcanic islands, lying just north of Sicily in southern Italy. The second largest of the islands, Salina, exhibits a wide range of compositional variation in its erupted products, from basaltic lavas to rhyolitic pumice. The Monte dei Porri eruptions occurred between 60 ka and 30 ka, following a period of approximately 60,000 years of repose. The bulk rock composition of the Monte dei Porri products range from basaltic-andesite scoria to andesitic pumice in the Grey Porri Tuff (GPT), with the Monte dei Porri lavas having basaltic-andesite compositions. The typical mineral assemblage of the GPT is calcic plagioclase, clinopyroxene (augite), olivine (Fo72?84) and orthopyroxene (enstatite) ± amphibole and Ti-Fe oxides. The lava units show a similar mineral assemblage, but contain lower Fo olivines (Fo57?78). The lava units also contain numerous glomerocrysts, including an unusual variety that contains quartz, K-feldspar and mica. Melt inclusions (MI) are ubiquitous in all mineral phases from all units of the Monte dei Porri eruptions; however, only data from olivine-hosted MI in the GPT are reported here. Compositions of MI in the GPT are typically basaltic (average SiO2 of 49.8 wt %) in the pumices and basaltic-andesite (average SiO2 of 55.6 wt %) in the scoriae and show a bimodal distribution in most compositional discrimination plots. The compositions of most of the MI in the scoriae overlap with bulk rock compositions of the lavas. Petrological and geochemical evidence suggest that mixing of one or more magmas and/or crustal assimilation played a role in the evolution of the Monte dei Porri magmatic system, especially the GPT. Analyses of the more evolved mineral phases are required to better constrain the evolution of the magma.  相似文献   
28.
An examination of the histogram of the supernova remnants radii allows one to deduce: (1) some support for the existence of a fairly dense galactic halo at least up to a few kpc from the galactic plane; (2) a first approximation for the initial energy distribution. Although the precise shape is still in doubt and various possibilities exist, one can conclude that the supernova rate should be no less than 1/150 SN yr–1, and no more than 1/70 SN yr–1; the average initial energy should be larger than 1.4×1049 erg.  相似文献   
29.
The Sila batholith is the largest granitic massif in the Calabria-Peloritan Arc of southern Italy, consisting of syn to post-tectonic, calc-alkaline and metaluminous tonalite to granodiorite, and post-tectonic, peraluminous and strongly peraluminous, two-mica±cordierite±Al silicate granodiorite to leucomonzogranite. Mineral 40Ar/39Ar thermochronologic analyses document Variscan emplacement and cooling of the intrusives (293–289 Ma). SiO2 content in the granitic rocks ranges from 57 to 77 wt%; cumulate gabbro enclaves have SiO2 as low as 42%. Variations in absolute abundances and ratios involving Hf, Ta, Th, Rb, and the REE, among others, identify genetically linked groups of granitic rocks in the batholith: (1) syn-tectonic biotite±amphibole-bearing tonalites to granodiorites, (2) post-tectonic two-mica±Al-silicate-bearing granodiorites to leucomonzogranites, and (3) post-tectonic biotite±hornblende tonalites to granodiorites. Chondrite-normalized REE patterns display variable values of Ce/Yb (up to 300) and generally small negative Eu anomalies. Degree of REE fractionation depends on whether the intrusives are syn- or post-tectonic, and on their mineralogy. High and variable values of Rb/Y (0.40–4.5), Th/Sm (0.1–3.6), Th/Ta (0–70), Ba/Nb (1–150), and Ba/Ta (50–2100), as well as low values of Nb/U (2–28) and La/Th (1–10) are consistent with a predominant and heterogeneous crustal contribution to the batholith. Whole rock 18O ranges from +8.2 to +11.7; the mafic cumulate enclaves have the lowest 18O values and the two-mica granites have the highest values. 18O values for biotite±honblende tonalitic and granodioritic rocks (9.1 to 10.8) overlap the values of the mafic enclaves and two-mica granodiorites and leucogranites (10.7 to 11.7). The initial Pb isotopic range of the granitic rocks (206Pb/204Pb 18.17–18.45, 207Pb/204Pb 15.58–15.77, 208Pb/204Pb 38.20–38.76) also indicates the predominance of a crustal source. Although the granitic groups cannot be uniquely distinguished on the basis of their Pb isotope compositions most of the post-tectonic tonalites to granodiorites as well as two-mica granites are somewhat less radiogenic than the syn-tetonic tonalites and granodiorites. Only a few of the mafic enclaves overlap the Pb isotope field of the granitic rocks and are consistent with a cogenetic origin. The Sila batholith was generated by mixing of material derived from at least two sources, mantle-derived and crustal, during the closing stages of plate collision and post-collision. The batholith ultimately owes its origin to the evolution of earlier, more mafic parental magmas, and to complex intractions of the fractionating mafic magmas with the crust. Hybrid rocks produced by mixing evolved primarily by crystal fractionation although a simple fractionation model cannot link all the granitic rocks, or explain the entire spectrum of compositions within each group of granites. Petrographic and geochemical features characterizing the Sila batholith have direct counterparts in all other granitic massifs in the Calabrian-Peloritan Arc. This implies that magmatic events in the Calabrian-Peloritan Arc produced a similar spectrum of granitic compositions and resulted in a distinctive type of granite magmatism consisting of coeval, mixed, strongly peraluminous and metaluminous granitic magmas.  相似文献   
30.
WithN-body simulations, we study the evolution of the large-scale structure of the Universe, assuming non-Gaussian initial conditions. We also discuss the sensitivity of different statistical tests to the change of the initial conditions.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号