排序方式: 共有51条查询结果,搜索用时 15 毫秒
41.
Saeed Soleimani Gorgani M. Nouraliei Sara Soleimani Gorgani 《International Journal of Environmental Science and Technology》2016,13(6):1573-1580
Density functional theory (DFT) calculations were employed to investigate the effects of adsorption of toxic carbon monoxide (CO) and nitrogen monoxide (NO) molecules on heterogeneous C16Zn8O8 nanocage. A detailed analysis of the energetic, geometry, and electronic structure of various CO and NO adsorptions on the cluster surface was performed. It has been shown that CO molecule was adsorbed on the surface of the cluster resulting in more stable complex system, while NO molecule adsorption led to less stable system. These processes also changed the electronic properties of the cluster by reducing the HOMO/LUMO energy gap after adsorption process. Since this phenomenon led to an increment in the electrical conductivity of the cluster at a definite temperature, the C16Zn8O8 was transformed to a stronger semiconductor substance upon the CO and NO adsorption. We believe that this research may be helpful in the several fields study such as sensor and catalyst investigation. 相似文献
42.
In this paper, we consider the mechanical response of granular materials and compare the predictions of a hypoplastic model with that of a recently developed dilatant double shearing model which includes the effects of fabric. We implement the constitutive relations of the dilatant double shearing model and the hypoplastic model in the finite element program ABACUS/Explicit and compare their predictions in the triaxial compression and cyclic shear loading tests. Although the origins and the constitutive relations of the double shearing model and the hypoplastic model are quite different, we find that both models are capable of capturing typical behaviours of granular materials. This is significant because while hypoplasticity is phenomenological in nature, the double shearing model is based on a kinematic hypothesis and microstructural considerations, and can easily be calibrated through standard tests. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
43.
In this paper, we use seismic waveform simulation to investigate the influence of source mechanism complexity, surface topography, and quality factor on the observed peak ground motions in May 28, 2004, moment magnitude (Mw) 6.2 Baladeh earthquake. The observed peak ground acceleration (PGA) pattern in this event, which is the biggest earthquake to hit the Central Alborz Mountains of Iran in modern instrumental era, is irregular in some respects. First, the observed PGA contours are elongated toward north-west and, second, the maximum observed PGA value of 1049 cm/s2 on the horizontal component of Hasan Keyf station 50 km away from the epicenter is quite high and irregular for an earthquake of this magnitude, at such long distance. In this study, we employ the spectral element method, implemented in SPECFEM3D software package to simulate the 3D wave propagation from several source models in the area. Our results suggest directivity effect is the main cause of the anomalous observations in this earthquake and could account for the elongation of PGA contours and also the anomalous maximum PGA value observed at Hasan Keyf strong motion station. We show that the surface topography has minor effect on the observed peak ground acceleration and the resulting PGA maps. Also by finding the bounds of seismic quality factor effect on the peak ground acceleration values, we show that this factor could not account for the elongation of iso-acceleration contours in the north-west direction. 相似文献
44.
Ghasem Aghli Bahman Soleimani Sayed Salman Tabatabai Iman Zahmatkesh 《Arabian Journal of Geosciences》2017,10(12):265
Evaluation of fractures and their parameters, such as aperture and density, is necessary in the optimization of oil production and field development. The purpose of this study is the calculation of fracture parameters in the Asmari reservoir using two electrical image logs (FMI, EMI), and the determination of fracture parameters’ effect on the porosity and permeability using thin sections and velocity deviation log (VDL). The results indicate that production in the Asmari reservoir is a combination of fractures and rock matrix. Fracture aperture (VAH) and fracture porosity (VPA) are only measurable with core and image logs directly. However, regarding core limitations, the image log has been recognized as the best method for fracture parameter determination due to their high resolution (2.5 mm). In this study, VDL log and thin sections have been used as auxiliary methods which may be available in all wells. The VDL log provides a tool to obtain downhole information about the predominant pore type in carbonates. Results indicate that between fracture parameters, VAH is considered as the most important parameter for determining permeability. For well No. 3, VAH ranges from minimum 51 × 10?5 mm to maximum 0. 047 mm and VPA changes from min 10?5% to maximum 0.02056%. For well No. 6, VAH varies from 5 × 10?4 to 0.0695 mm and VPA varies from 10?5 to 0.015%. Therefore, due to high fracture density and fracture aperture, it seems that most of effective porosity originates from fractures especially in well No. 3. However, VDL for well No. 6 indicates that intercrystalline and vuggy porosity are the dominant porosity. This result may be an indication for fracture set diversity in the two studied wells. While in well No. 3, they related to the folding and active faults, in well No. 6 they are only of folding type. Furthermore, results indicate the high capability for both of EMI and FMI image logs for calculation of fracture and vug parameters in the carbonate reservoirs. 相似文献
45.
Near‐collapse response of existing RC building under severe pulse‐type ground motion using hybrid simulation 下载免费PDF全文
Column shear‐axial failure is a complex response, which lends itself to physical experimentation. Reinforced concrete structures built prior to the mid‐1970s are particularly susceptible to such failure. Shear‐axial column failure has been examined and studied at the element level, but current rehabilitation practice equates such a column failure with structural collapse, neglecting the collapse resistance of the full structural system following column failure. This system‐level response can prevent a column failure from leading to progressive collapse of the entire structure. In this study, a hybrid simulation was conducted on a representative pre‐1970s reinforced concrete frame structure under severe seismic ground motion, in which three full‐scale reinforced concrete columns were tested at the University of Illinois at Urbana Champaign. The analytical portion of the model was represented in the computer program OpenSees. Failure occurred in multiple physical specimens as a result of the ground motion, and the hybrid nature of the test allowed for observation of the system‐level response of the tested columns and the remaining structural system. The behavior of the system accounting for multiple column shear‐axial failure is discussed and characterized. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
46.
Non-stationary models often capture better spatial variation of real world spatial phenomena than stationary ones. However, the construction of such models can be tedious as it requires modeling both statistical trend and stationary stochastic component. Non-stationary models are an important issue in the recent development of multiple-point geostatistical models. This new modeling paradigm, with its reliance on the training image as the source for spatial statistics or patterns, has had considerable practical appeal. However, the role and construction of the training image in the non-stationary case remains a problematic issue from both a modeling and practical point of view. In this paper, we provide an easy to use, computationally efficient methodology for creating non-stationary multiple-point geostatistical models, for both discrete and continuous variables, based on a distance-based modeling and simulation of patterns. In that regard, the paper builds on pattern-based modeling previously published by the authors, whereby a geostatistical realization is created by laying down patterns as puzzle pieces on the simulation grid, such that the simulated patterns are consistent (in terms of a similarity definition) with any previously simulated ones. In this paper we add the spatial coordinate to the pattern similarity calculation, thereby only borrowing patterns locally from the training image instead of globally. The latter would entail a stationary assumption. Two ways of adding the geographical coordinate are presented, (1) based on a functional that decreases gradually away from the location where the pattern is simulated and (2) based on an automatic segmentation of the training image into stationary regions. Using ample two-dimensional and three-dimensional case studies we study the behavior in terms of spatial and ensemble uncertainty of the generated realizations. 相似文献
47.
Mehrdad Bijandi Mohammad Karimi Bahman Farhadi Bansouleh Wim van der Knaap 《Transactions in GIS》2021,25(1):551-574
In the process of agricultural land consolidation, the land parcels are optimally redesigned and rearranged in such a way that the dimensions of the resulting parcels are proportional to agricultural criteria such as irrigation discharge, soil texture, and cropping pattern. Besides these criteria, spatial factors like slope, road accessibility, volume of earthwork, and geometrical factors such as size and shape of parcels are also included in the design process of agricultural land partitioning. In this study, a land partitioning model was proposed using a multi‐objective artificial bee colony algorithm (MOABC‐LP) taking into consideration the mentioned factors. Initially, a feasible dimension range of parcels in a block was calculated based on irrigation efficiency. Two partitioning layouts were defined according to the topography and geometry of blocks. The proposed method was applied to a real study area and the results suggest that the land partitioning plan obtained by the MOABC‐LP model, in comparison with a designer's plan, not only makes the shape and size of parcels more compatible with the topographical and agricultural conditions of each block, but also reduces their cut‐and‐fill ratio. 相似文献
48.
A radio magnetotelluric study to evaluate the extents of a limestone quarry in Estonia 总被引:1,自引:0,他引:1
Electromagnetic signals from distant radio transmitters in the frequency range 15–250 kHz were measured to model an electrical resistivity structure beneath 7 profiles in the vicinity of the Karinu limestone quarry in Estonia with the aim to map the extent of the economically exploitable limestone. The resistivity models from a 2D inversion of determinant resistivity and phase values using an Occam type of regularization contained reasonably accurate information about the geometry, namely depth to the top and the bottom of the target high‐resistivity limestone. The resistivity models correlated well with existing geological evidences as well as information from closely located boreholes. However, the sharp lithological boundaries seen in the boreholes were not resolved exactly in the resistivity models. This is probably because of the smoothing regularization used in the inversion process. Combined use of borehole data together with resistivity models resulted in two major geological interpretations; a) towards the western part of the existing limestone quarry there is a NNW to NS striking fault, covered by post‐glacial sediments, b) a potential cost‐effective exploitable area containing high quality highly resistive limestone is located south of the existing quarry. This case study shows the applicability of the reasonably fast radio magnetotelluric (RMT) method for the exploration of near‐surface resources. 相似文献
49.
Tavakoli Hamidreza Kutanaei Saman Soleimani Hosseini Seyed Hossein 《地震工程与工程振动(英文版)》2019,18(3):555-566
Retaining walls have been used in many construction projects such as for road and inclined surfaces protection. The damage caused by an earthquake depends on the fundamental frequency, amplitude and the duration of the seismic motion. These parameters strongly depend on the seismic properties of the layers that are near the surface. In the study of retaining walls, in addition to the influence of soil, the influence of topography is also important. In the present study, site response analysis is performed by using finite element software PLAXIS to obtain the effect of various factors such as embedded length of the sheet pile, underground water table, length and angle of the nail, shear wave velocity of soil on site effect and dynamic response. Moreover, for better understanding of the effect of the above parameters, the stability analysis was performed by using shear reduction method. The results show that an increase in the embedded length of the sheet pile and the length of nailing causes an increase in the amplification factor. Moreover, for shear-wave velocity in the range of 200-600 m/s, the amplification factor increases with increase of the shear-wave velocity due to the decrease of nonlinear behavior. 相似文献
50.
The common reflection surface (CRS) stack method is known as a generalized stacking velocity analysis tool and was originally introduced as a data-driven method to simulate zero-offset sections. However, this method has some difficulties in imaging complex structures and low-quality data. The problem of conflicting dips is one of the drawbacks of the CRS method addressed in many studies. The common diffraction surface (CDS) method was explicitly introduced to overcome this problem. In one study, the problem was resolved by combination of the CDS method and the common offset CRS method. The method was called the common offset CDS method showed successful application on improving image quality in semi-complex media. In this study, we combined the partial CRS with the CDS to derive the partial CDS for more efficient resolve of the conflicting dips problem. In the partial CDS, thresholds in the angle spectrum were removed for full contribution of all possible dips to have volume of operators for a sample point. The aperture definition in the partial CDS is the same as in the partial CRS, where an offset and time variant aperture is used. The new method was applied on a simple synthetic data set with much diffraction points imbedded in the model. Then it was applied to a semicomplex data set to enhance the body of mud volcanoes and faults. For better comparison, it was applied to two more real data sets from a complex overthrust zone to improve the seismic quality and remove the geological ambiguities in the interpretation. In the synthetic data example, more conflicting dips were resolved than in the other methods. In all real data examples, the enhanced partial CDS data were depth-migrated to compare them with the pre-stack depth migration of partial CRS gathers. More details of the geological structures can be observed in the new results. 相似文献