China Ocean Engineering - In this paper, a new control system is proposed for dynamic positioning (DP) of marine vessels with unknown dynamics and subject to external disturbances. The control... 相似文献
This paper presents a method for identification of the hydrodynamic coefficients of the dive plane of an autonomous underwater vehicle. The proposed identification method uses the governing equations of motion to estimate the coefficients of the linear damping, added mass and inertia, cross flow drag and control. Parts of data required by the proposed identification method are not measured by the onboard instruments. Hence, an optimal fusion algorithm is devised which estimates the required data accurately with a high sampling rate. To excite the dive plane dynamics and obtain the required measurements, diving maneuvers should be performed. Hence, a reliable controller with satisfactory performance and stability is needed. A cascaded controller is designed based on the coefficients obtained using a semi-empirical method and its robustness to the uncertainties is verified by the μ-analysis method. The performance and accuracy of the identification and fusion algorithms are investigated through 6-DOF numerical simulations of a realistic autonomous underwater vehicle. 相似文献
AbstractExact evaluation of scour depth around piers under debris accumulation is crucial for the safe design of pier structures. Experimental studies on scouring around pier bridges with debris accumulation have been conducted to estimate the maximum scour depth using various empirical relationships. However, due to the oversimplification of a complex process, the proposed relationships have not always been able to accurately predict the pier scour depth. This research proposes linear genetic programming (LGP) approach as an extension of the genetic programming to predict the scour depth around bridge piers. Among the artificial intelligence techniques, LGP and locally weighted linear regression (LWLR) models have not been used to predict the scour depth at bridge piers. Literature experimental data were collected and used to develop the models. The performance of the LGP method was compared with gene-expression programming, LWLR, multilinear regression and empirical equations using rigorous statistical criteria. The correlation coefficient (R) and the root mean squared error (RMSE) were (R?=?0.962, RMSE =0.31) and (R?=?0.885, RMSE =0.542) for the LGP and LWLR, respectively. The results demonstrated the superiority of the LGP method for increasing the accuracy of the predicted scour depth in comparison with the other models. 相似文献
A new method of implementing, in two-dimensional (2-D) Navier–Stokes equations, a numerical internal wave generation in the finite volume formulation is developed. To our knowledge, the originality of this model is on the specification of an internal inlet velocity defined as a source line for the generation of linear and non-linear waves. The use of a single cell to represent the source line and its transformation to an internal boundary condition proved to be an interesting alternative to the common procedure of adding a mass source term to the continuity equation within a multi-cell rectangular region. Given the reduction of the source domain to a one-dimensional region, this simple new type of source introduced less perturbation than the 2-D source type. This model was successfully implemented in the PHOENICS code (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series). In addition, the volume of fluid (VOF) fraction was used to describe the free surface displacements. A friction force term was added to the momentum transport equation in the vertical direction, in order to enhance wave damping, within relatively limited number of cells representing the sponge layers at the open boundaries. For monochromatic wave, propagating on constant water depth, numerical and analytical results showed good agreements for free surface profiles and vertical distribution of velocity components. For solitary wave simulation, the wave shape and velocity were preserved; while, small discrepancy in the tailing edge of the free surface profiles was observed. The suitability of this new numerical wave generation model for a two source lines extension was investigated and proven to be innovative. The comparisons between numerical, analytical and experimental results showed that the height of the merging waves was correctly reproduced and that the reflected waves do not interact with the source lines. 相似文献
To examine electron transport, energization, and precipitation in Mercury's magnetosphere, a hybrid simulation study has been carried out that follows electron trajectories within the global magnetospheric electric and magnetic field configuration of Mercury. We report analysis for two solar-wind parameter conditions corresponding to the first two MESSENGER Mercury flybys on January 14, 2008, and October 6, 2008, which occurred for similar solar wind speed and density but contrasting interplanetary magnetic field (IMF) directions. During the first flyby the IMF had a northward component, while during the second flyby the IMF was southward. Electron trajectories are traced in the fields of global hybrid simulations for the two flybys. Some solar wind electrons follow complex trajectories at or near where dayside reconnection occurs and enter the magnetosphere at these locations. The entry locations depend on the IMF orientation (north or south). As the electrons move through the entry regions they can be energized as they execute non-adiabatic (demagnetized) motion. Some electrons become magnetically trapped and drift around the planet with energies on the order of 1–10 keV. The highest energy of electrons anywhere in the magnetosphere is about 25 keV, consistent with the absence of high-energy (>35 keV) electrons observed during either MESSENGER flyby. Once within the magnetosphere, a fraction of the electrons precipitates at the planetary surface with fluxes on the order of 109 cm−2 s−1 and with energies of hundreds of eV. This finding has important implications for the viability of electron-stimulated desorption (ESD) as a mechanism for contributing to the formation of the exosphere and heavy ion cloud around Mercury. From laboratory estimates of ESD ion yields, a calculated ion production rate due to ESD at Mercury is found to be on par with ion sputtering yields. 相似文献
This study provides a checklist of species distributed at the altitude gradient of Moghan-Sabalan rangelands in Ardabili province, Northwest Iran. We evaluated the changes in species composition, growth types of species, Raunkiaer’s life forms, geographical distribution, threat and endemicity status, and palatability of species along two altitudinal gradients in the sampling plots, which were conducted in eleven sites/habitats with 300 meters above sea level (masl) altitude intervals (from 100 to 3300 masl). We assessed the plant species composition with special reference to the gradient analysis, and identified overall 396 species, which was comprising 44 families and 194 genera. Results showed that Asteraceae family is by far the most species-rich family, followed by Poaceae, Fabaceae, Caryophyllaceae and Brassicaceae. Among the genera, Astragalus is the most diverse genus, followed by Allium, Veronica and Bromus, Galium, Silene and Ranunculus. Results indicated that the number of species increased as the altitude increased to 1200–1500 masl, but then starts to decline to 3300 masl. Family-to-genera ratio was 1:4.4, the family-tospecies ratio was 1:9, and the genera-to-species ratio was 1:2.04. Growth type of species analysis shows that the frequency of perennial plants was higher in the study area followed by annual species while the lower group was biennial species. The number of annuals showed a decreasing trend towards higher altitude. Hemicryptophytes and therophytes were the most frequent life forms constituted each with (41.9%). Hemicryptophytes showed an increasing trend with altitude, while therophytes showed a decreasing trend with altitude increase, followed by geophytes, chamaephytes, and phanerophytes. Results showed more than half of the species of the study area belonged to Iran-Turanian region and these species showed an increasing trend with altitude. In contrast, Sahara-Sindian species comprise a minor component of the spectrum, with decreasing trend with altitude. The rare and endangered species out of the surveyed taxonomic groups comprised 53 species in total which 29 of them are considered lower risk (LR), 13 data deficient (DD), 5 vulnerable (Vu) and with 3 rare (R) and identified endemic plants comprised 24 species. Some 56.6% species were identified as class III, 22.6% were class I and 20.8% were class II as the palatability variation. Moghan-Sabalan rangelands require strong conservation management policies in case of species loss and changing natural communities due to the occurrence of conversion into cropland, over-grazing and other anthropogenic effects. 相似文献
The growing use of underground structures, specifically to facilitate urban transportation, highlights the need to scrutinize the effects of such spaces on the seismic ground response as well as the surrounding buildings. In this regard, the seismic ground amplification variations in the vicinity of single and twin box-shaped tunnels subjected to SV waves have been investigated by the finite difference method. To evaluate the effects, generalizable dimensionless diagrams based on the results of parametric numerical analysis considering factors such as variations in the tunnels’ depth, the distances between the tunnels, tunnel lining flexibility, and input wave frequency, have been presented. In addition, to assess the effects of underground box-shaped tunnels on the response spectrum of the ground surface, seven selected accelerograms have been matched based on a specific design spectrum for the stiff soil condition of Eurocode 8 (CEN, 2006). The results underline the significant amplification effect of the box-shaped tunnels on the ground motions, specifically in the case of horizontal twin tunnels, which should be given more attention in current seismic design practices for surface structures.
Estimation of reference evapotranspiration (ET0) in urban areas is challenging but essential in arid urban climates. To evaluate ET0 in an urban environment and non-urban areas, air temperature and relative humidity were measured at five different sites across the arid city of Isfahan, Iran, over 4 years. Wind speed and sunshine hours were obtained from an urban surrounding weather station over the same period and used to estimate ET0. Calculated ET0 was compared with satellite-based ET0 retrieved from the MOD16A2 PET product. Although MODIS PET was strongly correlated with the Valiantzas equation, it overestimated ET0 and showed average accuracy (r = 0.93–0.94, RMSE = 1.18–1.28 mm/day, MBE = 0.73–0.84 mm/day). The highest ET0 differences between an urban green space and a non-urban area were 1.1 and 0.87 mm/day, which were estimated by ground measurements and MODIS PET, respectively. The sensitivity of ET0 to wind speed and sunshine hours indicated a significant effect on cumulative ET0 at urban sites compared to the non-urban site, which has a considerable impact on the amount of irrigation required in those areas. Although MODIS PET requires improvement to accurately reflect field level microclimate conditions affecting ET0, it is beneficial to hydrological applications and water resource managers especially in areas where data is limited. In addition, our results indicated that using limited data methods or meteorological data from regional weather stations, leads to incorrect estimation of ET0 in urban areas. Therefore, decision-makers and urban planners should consider the importance of precisely estimating ET0 to optimize management of urban green space irrigation, especially in arid and semi-arid climates such as the city of Isfahan. 相似文献
The Earth’s gravity potential can be determined from its second-order partial derivatives using the spherical gradiometric boundary-value problems which have three integral solutions. The problem of merging these solutions by spectral combination is the main subject of this paper. Integral estimators of biased- and unbiased-types are presented for recovering the disturbing gravity potential from gravity gradients. It is shown that only kernels of the biased-type integral estimators are suitable for simultaneous downward continuation and combination of gravity gradients. Numerical results show insignificant practical difference between the biased and unbiased estimators at sea level and the contribution of far-zone gravity gradients remains significant for integration. These contributions depend on the noise level of the gravity gradients at higher levels than sea. In the cases of combining the gravity gradients, contaminated with Gaussian noise, at sea and 250?km levels the errors of the estimated geoid heights are about 10 and 3 times smaller than those obtained by each integral. 相似文献
Elastic response spectra that take into account the effects of soil-structure interaction on soft soils are developed. The response spectra are calculated utilizing a 3 DOF system including deformations of the superstructure and foundation. The equations of motion of the system are solved using direct integration under normalized earthquake records. Statistical processing of the results is implemented resulting in response spectra for \"short and dense buildings with low interaction\", \"short and dense buildings with high interaction\", \"tall and light buildings with low interaction\" and \"tall and light buildings with high interaction\". The resulting response spectra are smoothed and discussed. 相似文献