首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   23篇
  国内免费   8篇
测绘学   15篇
大气科学   12篇
地球物理   114篇
地质学   150篇
海洋学   17篇
天文学   9篇
综合类   3篇
自然地理   11篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   15篇
  2020年   22篇
  2019年   17篇
  2018年   40篇
  2017年   27篇
  2016年   35篇
  2015年   15篇
  2014年   25篇
  2013年   25篇
  2012年   22篇
  2011年   28篇
  2010年   16篇
  2009年   12篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1984年   2篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有331条查询结果,搜索用时 171 毫秒
81.
This study provides a checklist of species distributed at the altitude gradient of Moghan-Sabalan rangelands in Ardabili province, Northwest Iran. We evaluated the changes in species composition, growth types of species, Raunkiaer’s life forms, geographical distribution, threat and endemicity status, and palatability of species along two altitudinal gradients in the sampling plots, which were conducted in eleven sites/habitats with 300 meters above sea level (masl) altitude intervals (from 100 to 3300 masl). We assessed the plant species composition with special reference to the gradient analysis, and identified overall 396 species, which was comprising 44 families and 194 genera. Results showed that Asteraceae family is by far the most species-rich family, followed by Poaceae, Fabaceae, Caryophyllaceae and Brassicaceae. Among the genera, Astragalus is the most diverse genus, followed by Allium, Veronica and Bromus, Galium, Silene and Ranunculus. Results indicated that the number of species increased as the altitude increased to 1200–1500 masl, but then starts to decline to 3300 masl. Family-to-genera ratio was 1:4.4, the family-tospecies ratio was 1:9, and the genera-to-species ratio was 1:2.04. Growth type of species analysis shows that the frequency of perennial plants was higher in the study area followed by annual species while the lower group was biennial species. The number of annuals showed a decreasing trend towards higher altitude. Hemicryptophytes and therophytes were the most frequent life forms constituted each with (41.9%). Hemicryptophytes showed an increasing trend with altitude, while therophytes showed a decreasing trend with altitude increase, followed by geophytes, chamaephytes, and phanerophytes. Results showed more than half of the species of the study area belonged to Iran-Turanian region and these species showed an increasing trend with altitude. In contrast, Sahara-Sindian species comprise a minor component of the spectrum, with decreasing trend with altitude. The rare and endangered species out of the surveyed taxonomic groups comprised 53 species in total which 29 of them are considered lower risk (LR), 13 data deficient (DD), 5 vulnerable (Vu) and with 3 rare (R) and identified endemic plants comprised 24 species. Some 56.6% species were identified as class III, 22.6% were class I and 20.8% were class II as the palatability variation. Moghan-Sabalan rangelands require strong conservation management policies in case of species loss and changing natural communities due to the occurrence of conversion into cropland, over-grazing and other anthropogenic effects.  相似文献   
82.
The drift pushover analysis method for tall and regular buildings is extended in this paper to the third dimension. The focus of study is on the structures with important torsional response. For this purpose, 10, 15, 20 and 30-story steel moment frame buildings having unsymmetrical plans with 5–30% eccentricity ratios are studied. For evaluation of accuracy, nonlinear dynamic response of the buildings is determined under a consistent suit of earthquake ground motions. The maxima of the story drifts and shears and cumulative plastic hinge rotations of stories are calculated under the ground motions and their averages along with those of the modal pushover procedure are compared with the results of the presented method. The comparative analysis establishes the good accuracy of the three dimensional drift pushover method.  相似文献   
83.
The main goal of this article is to decluster Iranian plateau seismic catalog by the epidemic-type aftershock sequence (ETAS) model and compare the results with some older methods. For this purpose, Iranian plateau bounded in 24°–42°N and 43°–66°E is subdivided into three major tectonic zones: (1) North of Iran (2) Zagros (3) East of Iran. The extracted earthquake catalog had a total of 6034 earthquakes (Mw?>?4) in the time span 1983–2017. The ETAS model is an accepted stochastic approach for seismic evaluation and declustering earthquake catalogs. However, this model has not yet been used to decluster the seismic catalog of Iran. Until now, traditional methods like the Gardner and Knopoff space–time window method and the Reasenberg link-based method have been used in most studies for declustering Iran earthquake catalog. Finally, the results of declustering by the ETAS model are compared with result of Gardner and Knopoff (Bull Seismol Soc Am 64(5):1363–1367, 1974), Uhrhammer (Earthq Notes 57(1):21, 1986), Gruenthal (pers. comm.) and Reasenberg (Geophys Res 90:5479–5495, 1985) declustering methods. The overall conclusion is difficult, but the results confirm the high ability of the ETAS model for declustering Iranian earthquake catalog. Use of the ETAS model is still in its early steps in Iranian seismological researches, and more parametric studies are needed.  相似文献   
84.
Elastic response spectra that take into account the effects of soil-structure interaction on soft soils are developed. The response spectra are calculated utilizing a 3 DOF system including deformations of the superstructure and foundation. The equations of motion of the system are solved using direct integration under normalized earthquake records. Statistical processing of the results is implemented resulting in response spectra for "short and dense buildings with low interaction", "short and dense buildings with high interaction", "tall and light buildings with low interaction" and "tall and light buildings with high interaction". The resulting response spectra are smoothed and discussed.  相似文献   
85.
One of the crucial components in seismic hazard analysis is the estimation of the maximum earthquake magnitude and associated uncertainty. In the present study, the uncertainty related to the maximum expected magnitude μ is determined in terms of confidence intervals for an imposed level of confidence. Previous work by Salamat et al. (Pure Appl Geophys 174:763-777, 2017) shows the divergence of the confidence interval of the maximum possible magnitude mmax for high levels of confidence in six seismotectonic zones of Iran. In this work, the maximum expected earthquake magnitude μ is calculated in a predefined finite time interval and imposed level of confidence. For this, we use a conceptual model based on a doubly truncated Gutenberg-Richter law for magnitudes with constant b-value and calculate the posterior distribution of μ for the time interval Tf in future. We assume a stationary Poisson process in time and a Gutenberg-Richter relation for magnitudes. The upper bound of the magnitude confidence interval is calculated for different time intervals of 30, 50, and 100 years and imposed levels of confidence α?=?0.5, 0.1, 0.05, and 0.01. The posterior distribution of waiting times Tf to the next earthquake with a given magnitude equal to 6.5, 7.0, and 7.5 are calculated in each zone. In order to find the influence of declustering, we use the original and declustered version of the catalog. The earthquake catalog of the territory of Iran and surroundings are subdivided into six seismotectonic zones Alborz, Azerbaijan, Central Iran, Zagros, Kopet Dagh, and Makran. We assume the maximum possible magnitude mmax?=?8.5 and calculate the upper bound of the confidence interval of μ in each zone. The results indicate that for short time intervals equal to 30 and 50 years and imposed levels of confidence 1???α?=?0.95 and 0.90, the probability distribution of μ is around μ?=?7.16???8.23 in all seismic zones.  相似文献   
86.
This study presents a time-dependent approach for seismic hazard in Tehran and surrounding areas. Hazard is evaluated by combining background seismic activity, and larger earthquakes may emanate from fault segments. Using available historical and paleoseismological data or empirical relation, the recurrence time and maximum magnitude of characteristic earthquakes for the major faults have been explored. The Brownian passage time (BPT) distribution has been used to calculate equivalent fictitious seismicity rate for major faults in the region. To include ground motion uncertainty, a logic tree and five ground motion prediction equations have been selected based on their applicability in the region. Finally, hazard maps have been presented.  相似文献   
87.
A simple and accurate traveltime approximation is important in many applications in seismic data processing, inversion and modelling stages. Generalized moveout approximation is an explicit equation that approximates reflection traveltimes in general two-dimensional models. Definition of its five parameters can be done from properties of finite offset rays, for general models, or by explicit calculation from model properties, for specific models. Two versions of classical finite-offset parameterization for this approximation use traveltime and traveltime derivatives of two rays to define five parameters, which makes them asymmetrical. Using a third ray, we propose a balance between the number of rays and the order of traveltime derivatives. Our tests using different models also show the higher accuracy of the proposed method. For acoustic transversely isotropic media with a vertical symmetry axis, we calculate a new moveout approximation in the generalized moveout approximation functional form, which is explicitly defined by three independent parameters of zero-offset two-way time, normal moveout velocity and anellipticity parameter. Our test shows that the maximum error of the proposed transversely isotropic moveout approximation is about 1/6 to 1/8 of that of the moveout approximation that had been reported as the most accurate approximation in these media. The higher accuracy is the result of a novel parameterization that do not add any computational complexity. We show a simple example of its application on synthetic seismic data.  相似文献   
88.
This study aims to develop a new earthquake strong motion-intensity catalog as well as intensity prediction equations for Iran based on the available data. For this purpose, all the sites which had both recorded strong motion and intensity values throughout the region were first searched. Then, the data belonging to the 306 identified sites were processed, and the results were compiled as a new strong motion-intensity catalog. Based on this new catalog, two empirical equations between the values of intensity and the ground motion parameters (GMPs) for the Iranian earthquakes were calculated. At the first step, earthquake “intensity” was considered as a function of five independent GMPs including “Log (PHA),” “moment magnitude (MW),” “distance to epicenter,” “site type,” and “duration,” and a multiple stepwise regression was calculated. Regarding the correlations between the parameters and the effectiveness coefficients of the predictors, the Log (PHA) was recognized as the most effective parameter on the earthquake “intensity,” while the parameter “site type” was removed from the equations since it was determines as the least significant variable. Then, at the second step, a simple ordinary least squares (OLS) regression was fitted only between the parameters intensity and the Log (PHA) which resulted in more over/underestimated intensity values comparing to the results of the multiple intensity-GMPs regression. However, for rapid response purposes, the simple OLS regression may be more useful comparing to the multiple regression due to its data availability and simplicity. In addition, according to 50 selected earthquakes, an empirical relation between the macroseismic intensity (I0) and MW was developed.  相似文献   
89.

Ground-motion Intensity Measures (IMs) are used to quantify the strength of ground motions and evaluate the response of structures. IMs act as a link between seismic demand and seismic hazard analysis and therefore, have a key role in performance-based earthquake engineering. Many studies have been carried out on the determination of suitable IMs in terms of efficiency, sufficiency and scaling robustness. The majority of these investigations focused on ordinary structures such as buildings and bridges, and only a few were about buried pipelines. In the current study, the optimal IMs for predicting the seismic demand of continuous buried steel pipelines under near-field pulse-like ground motion records is investigated. Incremental dynamic analysis is performed using twenty ground motion records. Using the results of the regression analysis, the optimality of 23 potential IMs are studied. It is concluded that specific energy density (SED) followed by \(\sqrt {VSI[{\omega _1}(PGD + RM{S_d})]} \) are the optimal IMs based on efficiency, sufficiency and scaling robustness for seismic response evaluation of buried pipelines under near-field ground motions.

  相似文献   
90.
Micro-organisms producing microbially induced sedimentary structures, particularly epibenthic cyanobacteria, are not facies-dependent and could flourish in any environment if appropriate ecological conditions were provided. Hence, the changes in environmental parameters are the controlling factors on ecological tolerance of the producers. This study on the lower Cambrian successions of the Lalun Formation in Central Iran shows that paralic environments reacted differently to changes in parameters such as river and tide energy, palaeo-topography, the rate of sediment supply and fluctuations in sea-level, even though all were characterized by sandy substrates suitable for the development of microbially induced sedimentary structures. Therefore, the abundance and preservation of microbially induced sedimentary structures varied in the different paralic environments. From a sequence stratigraphic viewpoint, this study demonstrates that erosional discontinuities lacked the conditions required for the substrate stabilization by microbial communities. The distribution, size and type of microbially induced sedimentary structures within high frequency cycles generally follow the trends of changes in vertical facies stacking patterns. Within systems tracts, the pattern, morphological diversity and size of microbially induced sedimentary structures are not dependent on the type of systems tract, but on the type of depositional system developed such as delta, incised valley, coastal plain, estuaries and shoreline to shelf systems. Generally, estuarine and peritidal carbonates record an increase in the development of mat colonization during the transgressive systems tract, owing to decreased sedimentation rate as well as extended shallow water habitats. In contrast, the existence of microbially induced sedimentary structures depends on the pattern of shoreline shift in depositional systems developed during the highstand systems tract, such as open coast tidal flat and delta environments. If a shoreline regression was continuous (depositional trend and stacking pattern are a set of high frequency cycles), a greater increase in the aggradational component than the progradational component would cause intensified destructive processes hindering the development of microbial communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号